• Title/Summary/Keyword: random programming

Search Result 91, Processing Time 0.035 seconds

A Decomposition Method for Two stage Stochstic Programming with Block Diagonal Structure (블록 대각 구조를 지닌 2단계 확률계획법의 분해원리)

  • 김태호;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 1985
  • This paper develops a decomposition method for stochastic programming with a block diagonal structure. Here we assume that the right-hand side random vector of each subproblem is differente each other. We first, transform this problem into a master problem, and subproblems in a similar way to Dantizig-Wolfe's Decomposition Princeple, and then solve this master problem by solving subproblems. When we solve a subproblem, we first transform this subproblem to a Deterministic Equivalent Programming (DEF). The form of DEF depends on the type of the random vector of the subproblem. We found the subproblem with finite discrete random vector can be transformed into alinear programming, that with continuous random vector into a convex quadratic programming, and that with random vector of unknown distribution and known mean and variance into a convex nonlinear programming, but the master problem is always a linear programming.

  • PDF

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

A Dynamic Programming Approach for Emergency Vehicle Dispatching Problems

  • Choi, Jae Young;Kim, Heung-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.91-100
    • /
    • 2016
  • In this research, emergency vehicle dispatching problems faced with in the wake of massive natural disasters are considered. Here, the emergency vehicle dispatching problems can be regarded as a single machine stochastic scheduling problems, where the processing times are independently and identically distributed random variables, are considered. The objective of minimizing the expected number of tardy jobs, with distinct job due dates that are independently and arbitrarily distributed random variables, is dealt with. For these problems, optimal static-list policies can be found by solving corresponding assignment problems. However, for the special cases where due dates are exponentially distributed random variables, using a proposed dynamic programming approach is found to be relatively faster than solving the corresponding assignment problems. This so-called Pivot Dynamic Programming approach exploits necessary optimality conditions derived for ordering the jobs partially.

Determining the Efficient Solutions for Bicriteria Programming Problems with Random Variables in Both the Objective Functions and the Constraints

  • Bayoumi, B.I.;El-Sawy, A.A.;Baseley, N.L.;Yousef, I.K.;Widyan, A.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.99-110
    • /
    • 2005
  • This paper suggests an efficient approach for stochastic bicriteria programming problem (SBCPP) with random variables in both the objective functions and in the right-hand side of the constraints. The suggested approach uses the statistical inference through two different techniques: In one of them, the SBCPP is transformed into an equivalent deterministic bicriteria programming problem (DBCPP), then the nonnegative weighted sum approach will be used to transform the bicriteria programming problem into a single objective programming problem, and the other technique, the nonnegative weighted sum approach is used to transform the SBCPP to an equivalent stochastic single objective programming problem, then apply the same procedure to convert stochastic single objective programming problem into its equivalent deterministic single objective programming problem (DSOPP). In both techniques the resulting problem can be solved as a nonlinear programming problem to get the efficient solutions. Finally, a comparison between the two different techniques is discussed, and illustrated example is given to demonstrate the actual application of these techniques.

  • PDF

A Study about Finding Optimal Path Using HAS Dynamic Programming (RAS Dynamic Programming을 이용한 최적 경로 탐색에 관한 연구)

  • Kim, Jeong-Tae;Cho, Hyun-Chul;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.226-227
    • /
    • 2007
  • Significant increase of container flows in marine terminals requires more efficient automatic port systems. This paper presents a novel routing and collision avoidance algorithm of linear motor based shuttle cars using random access sequence dynamic programming (RAS DP). The proposed RAS DP is accomplished online for determining optimal paths for each shuttle car.

  • PDF

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

A Stochastic LP Model a Multi-stage Production System with Random Yields (수율을 고려한 다단계 생산라인의 Stochastic LP 모형)

  • 최인찬;박광태
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 1997
  • In this paper, we propose a stochastic LP model for determining an optimal input quantity in a single-product multi-stage production system with random yields. Due to the random yields in our model, each stage of the production system can result in defective items, which can be re-processed or scrapped at certain costs. We assume that the random yield at each stage follows an independent discrete empirical distribution. Compared to dynamic programming models that prevail in the literature, our model can easily handle problems of larger sizes.

  • PDF

Industrial application of gross error estimation and data reconciliation to byproduction gases in iron and steel making plants

  • Yi, Heui-Seok;Hakchul Shin;Kim, Jeong-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.2-69
    • /
    • 2002
  • Process measurements contain random and gross errors and the size estimation of gross errors is required for production accounting. Mixed integer programming technique had been applied to identify and estimate the gross errors simultaneously. However, the compensate model based on mixed integer programming used all measured variables or spanning tree as gross error candidates. This makes gross error estimation problem combinatorial or computationally expensive. Mixed integer programming with test statistics is proposed for computationally inexpensive gross error identification /estimation. The gross error candidates are identified by measurement test and the set of gross error candidates are...

  • PDF

A Study about Finding Optimal Path Using RAS Dynamic Programming (RAS Dynamic Programming을 이용한 최적 경로 탐색에 관한 연구)

  • Kim, Jeong-Tae;Lee, John-Tak;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1736-1737
    • /
    • 2007
  • Significant increase of container flows in marine terminals requires more efficient automatic port systems. This paper presents a novel routing and collision avoidance algorithm of linear motor based shuttle cars using random access sequence dynamic programming (RAS DP). The proposed RAS DP is accomplished online for determining optimal paths for each shuttle car.

  • PDF

A Crash Prediction Model for Expressways Using Genetic Programming (유전자 프로그래밍을 이용한 고속도로 사고예측모형)

  • Kwak, Ho-Chan;Kim, Dong-Kyu;Kho, Seung-Young;Lee, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.4
    • /
    • pp.369-379
    • /
    • 2014
  • The Statistical regression model has been used to construct crash prediction models, despite its limitations in assuming data distribution and functional form. In response to the limitations associated with the statistical regression models, a few studies based on non-parametric methods such as neural networks have been proposed to develop crash prediction models. However, these models have a major limitation in that they work as black boxes, and therefore cannot be directly used to identify the relationships between crash frequency and crash factors. A genetic programming model can find a solution to a problem without any specified assumptions and remove the black box effect. Hence, this paper investigates the application of the genetic programming technique to develope the crash prediction model. The data collected from the Gyeongbu expressway during the past three years (2010-2012), were separated into straight and curve sections. The random forest technique was applied to select the important variables that affect crash occurrence. The genetic programming model was developed based on the variables that were selected by the random forest. To test the goodness of fit of the genetic programming model, the RMSE of each model was compared to that of the negative binomial regression model. The test results indicate that the goodness of fit of the genetic programming models is superior to that of the negative binomial models.