• 제목/요약/키워드: random partition model

검색결과 16건 처리시간 0.023초

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

TMS320C80(MVP)과 markov random field를 이용한 영상해석 (Image analysis using a markov random field and TMS320C80(MVP))

  • 백경석;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1722-1725
    • /
    • 1997
  • This paper presents image analysis method using a Markov random field(MRF) model. Particulary, image esgmentation is to partition the given image into regions. This scheme is first segmented into regions, and the obtained domain knowledge is used to obtain the improved segmented image by a Markov random field model. The method is a maximum a posteriori(MAP) estimation with the MRF model and its associated Gibbs distribution. MAP estimation method is applied to capture the natural image by TMS320C80(MVP) and to realize the segmented image by a MRF model.

  • PDF

A Context-based Fast Encoding Quad Tree Plus Binary Tree (QTBT) Block Structure Partition

  • Marzuki, Ismail;Choi, Hansol;Sim, Donggyu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.175-177
    • /
    • 2018
  • This paper proposes an algorithm to speed up block structure partition of quad tree plus binary tree (QTBT) in Joint Exploration Test Model (JEM) encoder. The proposed fast encoding of QTBT block partition employs three spatially neighbor coded blocks, such as left, top-left, and top of current block, to early terminate QTBT block structure pruning. The propose algorithm is organized based on statistical similarity of those spatially neighboring blocks, such as block depths and coded block types, which are coded with overlapped block motion compensation (OBMC) and adaptive multi transform (AMT). The experimental results demonstrate about 30% encoding time reduction with 1.3% BD-rate loss on average compared to the anchor JEM-7.1 software under random access configuration.

  • PDF

사영에 의한 확률효과모형의 분석 (The analysis of random effects model by projections)

  • 최재성
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.31-39
    • /
    • 2015
  • 본 논문은 확률효과모형에서 사영에 근거한 분산성분을 구하는 방법을 다루고 있다. 분산성분을 추정하기 위한 ANOVA방법에서 제곱합의 계산에 사영을 이용하는 방법을 제시하고 있다. 분산성분을 구하기 위한 사영의 이용은 모형행렬에 의한 사영공간을 분산성분별 제곱합을 얻기 위한 상호직교하는 부분공간들로 분할하게 된다. 부분공간들로 분할하기 위해 모형행렬 X로의 사영에 단계별 방법(stepwise procedure)을 적용하여 해당하는 공간으로의 사영행렬을 구하는 방법을 다루고 있다. 단계별 방법에 의해 주어지는 부분공간들의 직교성으로 인해 사영행렬의 곱은 영행렬로 주어지는 성질을 갖는다. 단계별 방법에 의한 순차적 사영은 해당하는 공간으로의 사영행렬에 대한 확인과 사영행렬의 구조를 파악할 수 있는 이점이 있다. 또한 분산성분의 추정을 위한 제1종 제곱합을 구하기 위한 방법으로 유용하다.

약물유전체학에서 약물반응 예측모형과 변수선택 방법 (Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics)

  • 김규환;김원국
    • 응용통계연구
    • /
    • 제34권2호
    • /
    • pp.153-166
    • /
    • 2021
  • 약물유전체학 연구의 주요 목표는 고차원의 유전 변수를 기반으로 개인의 약물 반응성을 예측하는 것이다. 변수의 개수가 많기 때문에 변수의 개수를 줄이기 위해서는 변수 선택이 필요하며, 선택된 변수들은 머신러닝 알고리즘을 사용하여 예측 모델을 구축하는데 사용된다. 본 연구에서는 400명의 뇌전증 환자의 차세대 염기서열 분석 데이터에 로지스틱 회귀, ReliefF, TurF, 랜덤 포레스트, LASSO의 조합과 같은 여러 가지 혼합 변수 선택 방법을 적용하였다. 선택된 변수들에 랜덤포레스트, 그래디언트 부스팅, 서포트벡터머신을 포함한 머신러닝 방법들을 적용했고 스태킹을 통해 앙상블 모형을 구축하였다. 본 연구의 결과는 랜덤포레스트와 ReliefF의 혼합 변수 선택 방법을 이용한 스태킹 모형이 다른 모형보다 더 좋은 성능을 보인다는 것을 보여주었다. 5-폴드 교차 검증을 기반으로 하여 적합한 최적 모형의 평균 검증 정확도는 0.727이고 평균 검증 AUC 값은 0.761로 나타났다. 또한, 동일한 변수를 사용할 때 스태킹 모델이 단일 머신러닝 예측 모델보다 성능이 우수한 것으로 나타났다.

머신러닝 기반 고용량 I-131의 용량 예측 모델에 관한 연구 (A Study on Predictive Modeling of I-131 Radioactivity Based on Machine Learning)

  • 유연욱;이충운;김정수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권2호
    • /
    • pp.131-139
    • /
    • 2023
  • High-dose I-131 used for the treatment of thyroid cancer causes localized exposure among radiology technologists handling it. There is a delay between the calibration date and when the dose of I-131 is administered to a patient. Therefore, it is necessary to directly measure the radioactivity of the administered dose using a dose calibrator. In this study, we attempted to apply machine learning modeling to measured external dose rates from shielded I-131 in order to predict their radioactivity. External dose rates were measured at 1 m, 0.3 m, and 0.1 m distances from a shielded container with the I-131, with a total of 868 sets of measurements taken. For the modeling process, we utilized the hold-out method to partition the data with a 7:3 ratio (609 for the training set:259 for the test set). For the machine learning algorithms, we chose linear regression, decision tree, random forest and XGBoost. To evaluate the models, we calculated root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) to evaluate accuracy and R2 to evaluate explanatory power. Evaluation results are as follows. Linear regression (RMSE 268.15, MSE 71901.87, MAE 231.68, R2 0.92), decision tree (RMSE 108.89, MSE 11856.92, MAE 19.24, R2 0.99), random forest (RMSE 8.89, MSE 79.10, MAE 6.55, R2 0.99), XGBoost (RMSE 10.21, MSE 104.22, MAE 7.68, R2 0.99). The random forest model achieved the highest predictive ability. Improving the model's performance in the future is expected to contribute to lowering exposure among radiology technologists.

초기값의 최적 설정에 의한 최적화용 신경회로망의 성능개선 (Improving the Performances of the Neural Network for Optimization by Optimal Estimation of Initial States)

  • 조동현;최흥문
    • 전자공학회논문지B
    • /
    • 제30B권8호
    • /
    • pp.54-63
    • /
    • 1993
  • This paper proposes a method for improving the performances of the neural network for optimization by an optimal estimation of initial states. The optimal initial state that leads to the global minimum is estimated by using the stochastic approximation. And then the update rule of Hopfield model, which is the high speed deterministic algorithm using the steepest descent rule, is applied to speed up the optimization. The proposed method has been applied to the tavelling salesman problems and an optimal task partition problems to evaluate the performances. The simulation results show that the convergence speed of the proposed method is higher than conventinal Hopfield model. Abe's method and Boltzmann machine with random initial neuron output setting, and the convergence rate to the global minimum is guaranteed with probability of 1. The proposed method gives better result as the problem size increases where it is more difficult for the randomized initial setting to give a good convergence.

  • PDF

Single-step genomic evaluation for growth traits in a Mexican Braunvieh cattle population

  • Jonathan Emanuel Valerio-Hernandez;Agustin Ruiz-Flores;Mohammad Ali Nilforooshan;Paulino Perez-Rodriguez
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.1003-1009
    • /
    • 2023
  • Objective: The objective was to compare (pedigree-based) best linear unbiased prediction (BLUP), genomic BLUP (GBLUP), and single-step GBLUP (ssGBLUP) methods for genomic evaluation of growth traits in a Mexican Braunvieh cattle population. Methods: Birth (BW), weaning (WW), and yearling weight (YW) data of a Mexican Braunvieh cattle population were analyzed with BLUP, GBLUP, and ssGBLUP methods. These methods are differentiated by the additive genetic relationship matrix included in the model and the animals under evaluation. The predictive ability of the model was evaluated using random partitions of the data in training and testing sets, consistently predicting about 20% of genotyped animals on all occasions. For each partition, the Pearson correlation coefficient between adjusted phenotypes for fixed effects and non-genetic random effects and the estimated breeding values (EBV) were computed. Results: The random contemporary group (CG) effect explained about 50%, 45%, and 35% of the phenotypic variance in BW, WW, and YW, respectively. For the three methods, the CG effect explained the highest proportion of the phenotypic variances (except for YW-GBLUP). The heritability estimate obtained with GBLUP was the lowest for BW, while the highest heritability was obtained with BLUP. For WW, the highest heritability estimate was obtained with BLUP, the estimates obtained with GBLUP and ssGBLUP were similar. For YW, the heritability estimates obtained with GBLUP and BLUP were similar, and the lowest heritability was obtained with ssGBLUP. Pearson correlation coefficients between adjusted phenotypes for non-genetic effects and EBVs were the highest for BLUP, followed by ssBLUP and GBLUP. Conclusion: The successful implementation of genetic evaluations that include genotyped and non-genotyped animals in our study indicate a promising method for use in genetic improvement programs of Braunvieh cattle. Our findings showed that simultaneous evaluation of genotyped and non-genotyped animals improved prediction accuracy for growth traits even with a limited number of genotyped animals.

군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석 (Bayesian analysis of finite mixture model with cluster-specific random effects)

  • 이혜진;경민정
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.57-68
    • /
    • 2017
  • 대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.

A Theory of Polymer Adsorption from Solution

  • Lee, Woong-Ki;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권1호
    • /
    • pp.19-26
    • /
    • 1987
  • A statistical thermodynamical treatment for polymer adsorption from solution is presented. The canonical partition function for the polymer solution in the presence of a surface or an impermeable interface is formulated on the basis of usual quasi-crystalline lattice model, Bragg-Williams approximation of random mixing, and Pak's simple treatment of liquid. The present theory gives the surface excess ${\Gamma}_{exc}$ and the surface coverage ${\phi}^s_2$ of the polymer as a function of the chain length x, the Flory-Huggins parameter x, the adsorption energy parameter $x_s$, and polymer concentration $v_2$. Present theory is also applicable to the calculation of interfacial tension of polymer solution against water. For the idealized flexible polymer, interfacial tensions according to our theory fit good to the experimental data to the agreeable degrees.