• Title/Summary/Keyword: random graph model classification

Search Result 7, Processing Time 0.023 seconds

The Classification of random graph models using graph centralities

  • Cho, Tae-Soo;Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.61-69
    • /
    • 2019
  • In this paper, a classification method of random graph models is proposed and it is based on centralities of the random graphs. Similarity between two random graphs is measured for the classification of random graph models. The similarity between two random graph models $G^{R_1}$ and $G^{R_2}$ is defined by the distance of $G^{R_1}$ and $G^{R_2}$, where $G^{R_2}$ is a set of random graph $G^{R_2}=\{G_1^{R_2},...,G_p^{R_2}\}$ that have the same number of nodes and edges as random graph $G^{R_1}$. The distance($G^{R_1},G^{R_2}$) is obtained by comparing centralities of $G^{R_1}$ and $G^{R_2}$. Through the computational experiments, we show that it is possible to compare random graph models regardless of the number of vertices or edges of the random graphs. Also, it is possible to identify and classify the properties of the random graph models by measuring and comparing similarities between random graph models.

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer (그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구)

  • Ji Hun Bae;Ju Hwan Lee;Gwang Hyun Yu;Gyeong Ju Kwon;Jin Young Kim
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Recently, a convolutional neural network (CNN) based system is being developed to overcome the limitations of human resources in the apple quality classification of farmhouse. However, since convolutional neural networks receive only images of the same size, preprocessing such as sampling may be required, and in the case of oversampling, information loss of the original image such as image quality degradation and blurring occurs. In this paper, in order to minimize the above problem, to generate a image patch based graph of an original image and propose a random walk-based positional encoding method to apply the graph transformer model. The above method continuously learns the position embedding information of patches which don't have a positional information based on the random walk algorithm, and finds the optimal graph structure by aggregating useful node information through the self-attention technique of graph transformer model. Therefore, it is robust and shows good performance even in a new graph structure of random node order and an arbitrary graph structure according to the location of an object in an image. As a result, when experimented with 5 apple quality datasets, the learning accuracy was higher than other GNN models by a minimum of 1.3% to a maximum of 4.7%, and the number of parameters was 3.59M, which was about 15% less than the 23.52M of the ResNet18 model. Therefore, it shows fast reasoning speed according to the reduction of the amount of computation and proves the effect.

Crop Yield Estimation Utilizing Feature Selection Based on Graph Classification (그래프 분류 기반 특징 선택을 활용한 작물 수확량 예측)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1269-1276
    • /
    • 2023
  • Crop estimation is essential for the multinational meal and powerful demand due to its numerous aspects like soil, rain, climate, atmosphere, and their relations. The consequence of climate shift impacts the farming yield products. We operate the dataset with temperature, rainfall, humidity, etc. The current research focuses on feature selection with multifarious classifiers to assist farmers and agriculturalists. The crop yield estimation utilizing the feature selection approach is 96% accuracy. Feature selection affects a machine learning model's performance. Additionally, the performance of the current graph classifier accepts 81.5%. Eventually, the random forest regressor without feature selections owns 78% accuracy and the decision tree regressor without feature selections retains 67% accuracy. Our research merit is to reveal the experimental results of with and without feature selection significance for the proposed ten algorithms. These findings support learners and students in choosing the appropriate models for crop classification studies.

Development of Tourism Information Named Entity Recognition Datasets for the Fine-tune KoBERT-CRF Model

  • Jwa, Myeong-Cheol;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.55-62
    • /
    • 2022
  • A smart tourism chatbot is needed as a user interface to efficiently provide smart tourism services such as recommended travel products, tourist information, my travel itinerary, and tour guide service to tourists. We have been developed a smart tourism app and a smart tourism information system that provide smart tourism services to tourists. We also developed a smart tourism chatbot service consisting of khaiii morpheme analyzer, rule-based intention classification, and tourism information knowledge base using Neo4j graph database. In this paper, we develop the Korean and English smart tourism Name Entity (NE) datasets required for the development of the NER model using the pre-trained language models (PLMs) for the smart tourism chatbot system. We create the tourism information NER datasets by collecting source data through smart tourism app, visitJeju web of Jeju Tourism Organization (JTO), and web search, and preprocessing it using Korean and English tourism information Name Entity dictionaries. We perform training on the KoBERT-CRF NER model using the developed Korean and English tourism information NER datasets. The weight-averaged precision, recall, and f1 scores are 0.94, 0.92 and 0.94 on Korean and English tourism information NER datasets.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.