• 제목/요약/키워드: random forests model

검색결과 53건 처리시간 0.02초

Random Forests 기법을 이용한 백내장 예측모형 - 일개 대학병원 건강검진 수검자료에서 - (A Prediction Model for the Development of Cataract Using Random Forests)

  • 한은정;송기준;김동건
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.771-780
    • /
    • 2009
  • 백내장 질환은 노령인구가 증가하고 있는 시점에서 사회, 경제적으로 심각한 문제로 부각되고 있는 질병으로 조기 진단이 이루어진다면 발병률을 크게 줄일 수 있는 질병이다. 본 연구에서는 백내장을 조기 진단하기 위한 예측 모형을 구축하고자 1994년부터 2001년까지 연세대학병원에서 2회 이상 건강검진을 받고 의사진단을 통해 백내장 여부를 확인할 수 있는 30세 이상 남 녀 3,237명에 대한 건강검진 수검 자료를 활용하여 백내장 발생 위험 예측모형을 개발하였다. 모형개발에는 데이터마이닝 기법인 Random Forests를 사용하였고, 기존의 로지스틱 회귀분석, 판별분석, 의사결정나무 모형(Decision tree), 나이브베이즈(Naive Bayes), 앙상블 모형인 배깅(Bagging)과 아킹(Arcing)을 이용하여 그 성능을 비교 분석하였다. Random Forests를 통해 개발한 백내장 발생 예측모형은 정확도가 67.16%, 민감도가 72.28%였고, 주요 영향요인은 연령, 혈당, 백혈구수치(WBC), 혈소판수치(platelet), 중성지질(triglyceride), BMI였다. 이 결과는 의사의 안과검진 정보 없이 건강검진 수검 자료만으로 백내장 질환 유 무에 관한 정보를 70% 정도 예측할 수 있음을 보여주는 것으로, 백내장의 조기 진단에 많은 기여를 할 것으로 판단된다.

Application of Random Forests to Association Studies Using Mitochondrial Single Nucleotide Polymorphisms

  • Kim, Yoon-Hee;Kim, Ho
    • Genomics & Informatics
    • /
    • 제5권4호
    • /
    • pp.168-173
    • /
    • 2007
  • In previous nuclear genomic association studies, Random Forests (RF), one of several up-to-date machine learning methods, has been used successfully to generate evidence of association of genetic polymorphisms with diseases or other phenotypes. Compared with traditional statistical analytic methods, such as chi-square tests or logistic regression models, the RF method has advantages in handling large numbers of predictor variables and examining gene-gene interactions without a specific model. Here, we applied the RF method to find the association between mitochondrial single nucleotide polymorphisms (mtSNPs) and diabetes risk. The results from a chi-square test validated the usage of RF for association studies using mtDNA. Indexes of important variables such as the Gini index and mean decrease in accuracy index performed well compared with chi-square tests in favor of finding mtSNPs associated with a real disease example, type 2 diabetes.

Generalized Partially Linear Additive Models for Credit Scoring

  • Shim, Ju-Hyun;Lee, Young-K.
    • 응용통계연구
    • /
    • 제24권4호
    • /
    • pp.587-595
    • /
    • 2011
  • Credit scoring is an objective and automatic system to assess the credit risk of each customer. The logistic regression model is one of the popular methods of credit scoring to predict the default probability; however, it may not detect possible nonlinear features of predictors despite the advantages of interpretability and low computation cost. In this paper, we propose to use a generalized partially linear model as an alternative to logistic regression. We also introduce modern ensemble technologies such as bagging, boosting and random forests. We compare these methods via a simulation study and illustrate them through a German credit dataset.

Ensemble approach for improving prediction in kernel regression and classification

  • Han, Sunwoo;Hwang, Seongyun;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • 제23권4호
    • /
    • pp.355-362
    • /
    • 2016
  • Ensemble methods often help increase prediction ability in various predictive models by combining multiple weak learners and reducing the variability of the final predictive model. In this work, we demonstrate that ensemble methods also enhance the accuracy of prediction under kernel ridge regression and kernel logistic regression classification. Here we apply bagging and random forests to two kernel-based predictive models; and present the procedure of how bagging and random forests can be embedded in kernel-based predictive models. Our proposals are tested under numerous synthetic and real datasets; subsequently, they are compared with plain kernel-based predictive models and their subsampling approach. Numerical studies demonstrate that ensemble approach outperforms plain kernel-based predictive models.

Identifying the Optimal Machine Learning Algorithm for Breast Cancer Prediction

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.80-88
    • /
    • 2024
  • Breast cancer remains a significant global health burden, necessitating accurate and timely detection for improved patient outcomes. Machine learning techniques have demonstrated remarkable potential in assisting breast cancer diagnosis by learning complex patterns from multi-modal patient data. This study comprehensively evaluates several popular machine learning models, including logistic regression, decision trees, random forests, support vector machines (SVMs), naive Bayes, k-nearest neighbors (KNN), XGBoost, and ensemble methods for breast cancer prediction using the Wisconsin Breast Cancer Dataset (WBCD). Through rigorous benchmarking across metrics like accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), we identify the naive Bayes classifier as the top-performing model, achieving an accuracy of 0.974, F1-score of 0.979, and highest AUC of 0.988. Other strong performers include logistic regression, random forests, and XGBoost, with AUC values exceeding 0.95. Our findings showcase the significant potential of machine learning, particularly the robust naive Bayes algorithm, to provide highly accurate and reliable breast cancer screening from fine needle aspirate (FNA) samples, ultimately enabling earlier intervention and optimized treatment strategies.

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han;Xingliang, Jiang;Ye, Wang;Hui, Wang
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.271-291
    • /
    • 2023
  • Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

Estimation of frost durability of recycled aggregate concrete by hybridized Random Forests algorithms

  • Rui Liang;Behzad Bayrami
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.91-107
    • /
    • 2023
  • An effective approach to promoting sustainability within the construction industry is the use of recycled aggregate concrete (RAC) as a substitute for natural aggregates. Ensuring the frost resilience of RAC technologies is crucial to facilitate their adoption in regions characterized by cold temperatures. The main aim of this study was to use the Random Forests (RF) approach to forecast the frost durability of RAC in cold locations, with a focus on the durability factor (DF) value. Herein, three optimization algorithms named Sine-cosine optimization algorithm (SCA), Black widow optimization algorithm (BWOA), and Equilibrium optimizer (EO) were considered for determing optimal values of RF hyperparameters. The findings show that all developed systems faithfully represented the DF, with an R2 for the train and test data phases of better than 0.9539 and 0.9777, respectively. In two assessment and learning stages, EO - RF is found to be superior than BWOA - RF and SCA - RF. The outperformed model's performance (EO - RF) was superior to that of ANN (from literature) by raising the values of R2 and reducing the RMSE values. Considering the justifications, as well as the comparisons from metrics and Taylor diagram's findings, it could be found out that, although other RF models were equally reliable in predicting the the frost durability of RAC based on the durability factor (DF) value in cold climates, the developed EO - RF strategy excelled them all.

Simple Graphs for Complex Prediction Functions

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • Communications for Statistical Applications and Methods
    • /
    • 제15권3호
    • /
    • pp.343-351
    • /
    • 2008
  • By supervised learning with p predictors, we frequently obtain a prediction function of the form $y\;=\;f(x_1,...,x_p)$. When $p\;{\geq}\;3$, it is not easy to understand the inner structure of f, except for the case the function is formulated as additive. In this study, we propose to use p simple graphs for visual understanding of complex prediction functions produced by several supervised learning engines such as LOESS, neural networks, support vector machines and random forests.

Application of a comparative analysis of random forest programming to predict the strength of environmentally-friendly geopolymer concrete

  • Ying Bi;Yeng Yi
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.443-458
    • /
    • 2024
  • The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.

PITCHf/x를 이용한 투구의 질 평가 (Evaluating the quality of baseball pitch using PITCHf/x)

  • 박성민;장원철
    • 응용통계연구
    • /
    • 제33권2호
    • /
    • pp.171-184
    • /
    • 2020
  • 미국 메이저리그 야구 경기는 야구공을 추적하는 3대의 고속 카메라를 통해 모든 투구에 대한 궤적 데이터 PITCHf/x를 수집하고 공개한다. 선행 연구에서는 PITCHf/x 데이터를 통해 각 투구의 기대 피루타수를 계산하고 이를 토대로 투구의 질을 평가했다. 다만 기대 피루타수는 경기 득점으로 매번 이어지지 않기 때문에 각 투구가 승리에 기여하는 영향을 직접적으로 평가하지 못한다. 이 논문에서는 득점 기댓값과 득점 가치의 개념을 조합해 투구에 대한 기대 득점 가치를 계산하고 이를 통해 투구의 질을 랜덤 포레스트 모형으로 평가한 뒤, 기대 피루타수를 이용한 투구의 질 평가와 비교 분석한다.