• Title/Summary/Keyword: random forest model

Search Result 573, Processing Time 0.023 seconds

Development of Random Forest Model for Sewer-induced Sinkhole Susceptibility (손상 하수관으로 인한 지반함몰의 위험도 평가를 위한 랜덤 포레스트 모델 개발)

  • Kim, Joonyoung;Kang, Jae Mo;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.117-125
    • /
    • 2021
  • The occurrence of ground subsidence and sinkhole in downtown areas, which threatens the safety of citizens, has been frequently reported. Among the various mechanisms of a sinkhole, soil erosion through the damaged part of the sewer pipe was found to be the main cause in Seoul. In this study, a random forest model for predicting the occurrence of sinkholes caused by damaged sewer pipes based on sewage pipe information was trained using the information on the sewage pipe and the locations of the sinkhole occurrence case in Seoul. The random forest model showed excellent performance in the prediction of sinkhole occurrence after the optimization of its hyperparameters. In addition, it was confirmed that the sewage pipe length, elevation above sea level, slope, depth of landfill, and the risk of ground subsidence were affected in the order of sewage pipe information used as input variables. The results of this study are expected to be used as basic data for the preparation of a sinkhole susceptibility map and the establishment of an underground cavity exploration plan and a sewage pipe maintenance plan.

Activity Type Detection Of Random Forest Model Using UWB Radar And Indoor Environmental Measurement Sensor (UWB 레이더와 실내 환경 측정 센서를 이용한 랜덤 포레스트 모델의 재실활동 유형 감지)

  • Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.899-904
    • /
    • 2022
  • As the world becomes an aging society due to a decrease in the birth rate and an increase in life expectancy, a system for health management of the elderly population is needed. Among them, various studies on occupancy and activity types are being conducted for smart home care services for indoor health management. In this paper, we propose a random forest model that classifies activity type as well as occupancy status through indoor temperature and humidity, CO2, fine dust values and UWB radar positioning for smart home care service. The experiment measures indoor environment and occupant positioning data at 2-second intervals using three sensors that measure indoor temperature and humidity, CO2, and fine dust and two UWB radars. The measured data is divided into 80% training set data and 20% test set data after correcting outliers and missing values, and the random forest model is applied to evaluate the list of important variables, accuracy, sensitivity, and specificity.

A Prediction Model for the Development of Cataract Using Random Forests (Random Forests 기법을 이용한 백내장 예측모형 - 일개 대학병원 건강검진 수검자료에서 -)

  • Han, Eun-Jeong;Song, Ki-Jun;Kim, Dong-Geon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.771-780
    • /
    • 2009
  • Cataract is the main cause of blindness and visual impairment, especially, age-related cataract accounts for about half of the 32 million cases of blindness worldwide. As the life expectancy and the expansion of the elderly population are increasing, the cases of cataract increase as well, which causes a serious economic and social problem throughout the country. However, the incidence of cataract can be reduced dramatically through early diagnosis and prevention. In this study, we developed a prediction model of cataracts for early diagnosis using hospital data of 3,237 subjects who received the screening test first and then later visited medical center for cataract check-ups cataract between 1994 and 2005. To develop the prediction model, we used random forests and compared the predictive performance of this model with other common discriminant models such as logistic regression, discriminant model, decision tree, naive Bayes, and two popular ensemble model, bagging and arcing. The accuracy of random forests was 67.16%, sensitivity was 72.28%, and main factors included in this model were age, diabetes, WBC, platelet, triglyceride, BMI and so on. The results showed that it could predict about 70% of cataract existence by screening test without any information from direct eye examination by ophthalmologist. We expect that our model may contribute to diagnose cataract and help preventing cataract in early stages.

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Development of the Machine Learning-based Employment Prediction Model for Internship Applicants (인턴십 지원자를 위한 기계학습기반 취업예측 모델 개발)

  • Kim, Hyun Soo;Kim, Sunho;Kim, Do Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.138-143
    • /
    • 2022
  • The employment prediction model proposed in this paper uses 16 independent variables, including self-introductions of M University students who applied for IPP and work-study internship, and 3 dependent variable data such as large companies, mid-sized companies, and unemployment. The employment prediction model for large companies was developed using Random Forest and Word2Vec with the result of F1_Weighted 82.4%. The employment prediction model for medium-sized companies and above was developed using Logistic Regression and Word2Vec with the result of F1_Weighted 73.24%. These two models can be actively used in predicting employment in large and medium-sized companies for M University students in the future.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

COMPARATIVE ANALYSIS ON MACHINE LEARNING MODELS FOR PREDICTING KOSPI200 INDEX RETURNS

  • Gu, Bonsang;Song, Joonhyuk
    • The Pure and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.211-226
    • /
    • 2017
  • In this paper, machine learning models employed in various fields are discussed and applied to KOSPI200 stock index return forecasting. The results of hyperparameter analysis of the machine learning models are also reported and practical methods for each model are presented. As a result of the analysis, Support Vector Machine and Artificial Neural Network showed a better performance than k-Nearest Neighbor and Random Forest.

A Survival Prediction Model of Rats in Uncontrolled Acute Hemorrhagic Shock Using the Random Forest Classifier (랜덤 포리스트를 이용한 비제어 급성 출혈성 쇼크의 흰쥐에서의 생존 예측)

  • Choi, J.Y.;Kim, S.K.;Koo, J.M.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.148-154
    • /
    • 2012
  • Hemorrhagic shock is a primary cause of deaths resulting from injury in the world. Although many studies have tried to diagnose accurately hemorrhagic shock in the early stage, such attempts were not successful due to compensatory mechanisms of humans. The objective of this study was to construct a survival prediction model of rats in acute hemorrhagic shock using a random forest (RF) model. Heart rate (HR), mean arterial pressure (MAP), respiration rate (RR), lactate concentration (LC), and peripheral perfusion (PP) measured in rats were used as input variables for the RF model and its performance was compared with that of a logistic regression (LR) model. Before constructing the models, we performed 5-fold cross validation for RF variable selection, and forward stepwise variable selection for the LR model to examine which variables were important for the models. For the LR model, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (ROC-AUC) were 0.83, 0.95, 0.88, and 0.96, respectively. For the RF models, sensitivity, specificity, accuracy, and AUC were 0.97, 0.95, 0.96, and 0.99, respectively. In conclusion, the RF model was superior to the LR model for survival prediction in the rat model.

Machine-learning Approaches with Multi-temporal Remotely Sensed Data for Estimation of Forest Biomass and Forest Reference Emission Levels (시계열 위성영상과 머신러닝 기법을 이용한 산림 바이오매스 및 배출기준선 추정)

  • Yong-Kyu, Lee;Jung-Soo, Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.603-612
    • /
    • 2022
  • The study aims were to evaluate a machine-learning, algorithm-based, forest biomass-estimation model to estimate subnational forest biomass and to comparatively analyze REDD+ forest reference emission levels. Time-series Landsat satellite imagery and ESA Biomass Climate Change Initiative information were used to build a machine-learning-based biomass estimation model. The k-nearest neighbors algorithm (kNN), which is a non-parametric learning model, and the tree-based random forest (RF) model were applied to the machine-learning algorithm, and the estimated biomasses were compared with the forest reference emission levels (FREL) data, which was provided by the Paraguayan government. The root mean square error (RMSE), which was the optimum parameter of the kNN model, was 35.9, and the RMSE of the RF model was lower at 34.41, showing that the RF model was superior. As a result of separately using the FREL, kNN, and RF methods to set the reference emission levels, the gradient was set to approximately -33,000 tons, -253,000 tons, and -92,000 tons, respectively. These results showed that the machine learning-based estimation model was more suitable than the existing methods for setting reference emission levels.

Predictive Model of Optimal Continuous Positive Airway Pressure for Obstructive Sleep Apnea Patients with Obesity by Using Machine Learning (비만 폐쇄수면무호흡 환자에서 기계학습을 통한 적정양압 예측모형)

  • Kim, Seung Soo;Yang, Kwang Ik
    • Journal of Sleep Medicine
    • /
    • v.15 no.2
    • /
    • pp.48-54
    • /
    • 2018
  • Objectives: The aim of this study was to develop a predicting model for the optimal continuous positive airway pressure (CPAP) for obstructive sleep apnea (OSA) patient with obesity by using a machine learning. Methods: We retrospectively investigated the medical records of 162 OSA patients who had obesity [body mass index (BMI) ≥ 25] and undertaken successful CPAP titration study. We divided the data to a training set (90%) and a test set (10%), randomly. We made a random forest model and a least absolute shrinkage and selection operator (lasso) regression model to predict the optimal pressure by using the training set, and then applied our models and previous reported equations to the test set. To compare the fitness of each models, we used a correlation coefficient (CC) and a mean absolute error (MAE). Results: The random forest model showed the best performance {CC 0.78 [95% confidence interval (CI) 0.43-0.93], MAE 1.20}. The lasso regression model also showed the improved result [CC 0.78 (95% CI 0.42-0.93), MAE 1.26] compared to the Hoffstein equation [CC 0.68 (95% CI 0.23-0.89), MAE 1.34] and the Choi's equation [CC 0.72 (95% CI 0.30-0.90), MAE 1.40]. Conclusions: Our random forest model and lasso model ($26.213+0.084{\times}BMI+0.004{\times}$apnea-hypopnea index+$0.004{\times}oxygen$ desaturation index-$0.215{\times}mean$ oxygen saturation) showed the improved performance compared to the previous reported equations. The further study for other subgroup or phenotype of OSA is required.