• 제목/요약/키워드: random forest model

검색결과 573건 처리시간 0.028초

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

저출생 문제해결을 위한 한자녀 기혼여성의 후속 출산의향 예측: 머신러닝 방법의 적용 (Predicting the Subsequent Childbirth Intention of Married Women with One Child to Solve the Low Birth Rate Problem in Korea: Application of a Machine Learning Method)

  • 전효정
    • 한국보육지원학회지
    • /
    • 제20권2호
    • /
    • pp.127-143
    • /
    • 2024
  • Objective: The purpose of this study is to develop a machine learning model to predict the subsequent childbirth intention of married women with one child, aiming to address the low birth rate problem in Korea, This will be achieved by utilizing data from the 2021 Family and Childbirth Survey conducted by the Korea Institute for Health and Social Affairs. Methods: A prediction model was developed using the Random Forest algorithm to predict the subsequent childbirth intention of married women with one child. This algorithm was chosen for its advantages in prediction and generalization, and its performance was evaluated. Results: The significance of variables influencing the Random Forest prediction model was confirmed. With the exception of the presence or absence of leave before and after childbirth, most variables contributed to predicting the intention to have subsequent childbirth. Notably, variables such as the mother's age, number of children planned at the time of marriage, average monthly household income, spouse's share of childcare burden, mother's weekday housework hours, and presence or absence of spouse's maternity leave emerged as relatively important predictors of subsequent childbirth intention.

Comparative Evaluation of Machine Learning Models for Predicting Soccer Injury Types

  • Davronbek Malikov;Jaeho Kim;Jung Kyu Park
    • 한국산업융합학회 논문집
    • /
    • 제27권2_1호
    • /
    • pp.257-268
    • /
    • 2024
  • Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.

SAINT 기반의 소프트웨어 결함 예측 (Software Defect Prediction Based on SAINT)

  • ;주은정;이정화;류덕산
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.236-242
    • /
    • 2024
  • 소프트웨어 결함 예측(SDP)은 오류가 발생할 가능성이 있는 모듈을 사전에 식별하여 소프트웨어 개발의 효율을 높이고 있다. SDP에서의 주과제는 예측 성능을 향상시키는것에 있다. 최근 연구에서는 딥러닝 기법이 소프트웨어 결함 예측(SDP) 분야에 적용되어 있으며, 특히 구조화된 데이터를 분석하는 데 뛰어난 성능을 보이고 있는 SAINT 모델이 주목받고 있다. 본 연구는 SAINT 모델을 다른 주요 모델(XGBoost, Random Forest, CatBoost)과 비교하여 SDP에 적용 가능한 최신 딥러닝 기법을 조사하였다. SAINT는 일관되게 우수한 성능을 보여주며 결함 예측 정확도 향상에 효과적임을 입증하였다. 이 연구 결과는 실용적인 소프트웨어 개발 상황에서 결함 예측 방법론을 발전시킬 수 있는 SAINT의 잠재력을 강조하며, 교차 검증, 특성 스케일링, 비교 분석 등을 포함한 철저한 방법론을 통해 수행되었다.

이수식 TBM 데이터와 랜덤포레스트를 이용한 일축압축강도 분류 예측에 관한 연구 (A Study on the Prediction of Uniaxial Compressive Strength Classification Using Slurry TBM Data and Random Forest)

  • 강태호;최순욱;이철호;장수호
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.547-560
    • /
    • 2023
  • 최근 국내외에서 기계학습 기법으로 TBM 굴진 데이터와 지반데이터를 분석하는 지반 분류예측 연구가 증가하고 있다. 본 연구에서는 다양한 분야에서 널리 사용되고 있는 머신러닝 기법들 중 의사결정트리 기반 랜덤포레스트 모델을 3곳의 이수식 TBM 현장에서 획득한 기계 데이터와 지반 데이터에 적용하여 일축압축강도에 대한 다중 분류예측 연구를 하였다. 일축압축강도의 다중 분류 예측을 위해서 학습과 테스트 데이터를 7:3으로 분할하였으며, 최적의 파라미터를 선정을 위해서 분할 교차검증을 포함하는 그리드 서치를 활용하였다. 의사 결정 트리를 기반으로 한 랜덤 포레스트를 사용하여 일축압축강도 분류 학습을 수행한 결과, 다중 분류 예측 모델의 정확도는 학습 세트와 테스트 세트에서 각각 0.983 및 0.982로 모두 높게 나타났다. 다만, 클래스 간 데이터 분포의 불균형으로 인하여 클래스 4에서는 재현율이 낮게 평가되었다. 다양한 현장에서 획득한 일축압축강도의 측정 데이터양을 늘리는 연구가 필요한 것으로 판단된다.

머신 러닝을 이용한 밸브 사이즈 및 종류 예측 모델 개발 (Data-driven Modeling for Valve Size and Type Prediction Using Machine Learning)

  • 김찬호;최민식;주종효;이아름;윤건;조성호;김정환
    • Korean Chemical Engineering Research
    • /
    • 제62권3호
    • /
    • pp.214-224
    • /
    • 2024
  • 밸브는 유량과 압력 조절 등의 중요한 역할을 수행하며, 적절한 밸브 사이즈와 유형 선택이 필요하다. Engineering Procurement Construction (EPC) 산업에선 밸브 사이즈 계수(Cv)의 수식적 계산을 바탕으로 사이즈와 유형을 선정해왔으나 이러한 방식은 전문가의 많은 시간과 비용이 요구되어 비효율적이다. 본 연구는 이를 해결하기위해 머신 러닝기법을 이용한 밸브 사이즈 및 유형 예측 모델을 개발하였다. Artificial neural network (ANN), Random Forest, XGBoost, Catboost의알고리즘을 적용하여 모델들을 개발하였으며, 평가 지표로는 사이즈 예측에는 Normalized root mean squared error (NRMSE)와 R2를, 종류 예측에는 F1 score를 적용하였다. 또한, 유체 상에 따른 영향을 확인하고자 유체 전체, 액체, 기체, 스팀의 4개의 데이터 세트로 사례 연구를 진행하였다. 연구 결과, 사이즈의 경우 전체, 액체, 기체에선 Catboost(R2기준, 전체: 0.99216, 액체: 0.98602, 기체: 0.99300. NRMSE 기준, 전체: 0.04072, 액체: 0.04886, 기체: 0.03619)가, 스팀에선 Random Forest가(R2: 0.99028, NRMSE: 0.03493) 가장 뛰어난 모델임을 확인하였다. 종류의 경우 Catboost가 모든 데이터에서 가장 높은 성과를 제시하였다(F1 score 기준, 전체: 0.95766, 액체: 0.96264, 기체: 0.95770, 스팀: 1.0000). 본 연구에서 제안한 모델들을 적용할 경우, 주어진 조건에 따른 밸브 선택을 도와 의사결정 속도를 높여줄 것으로 기대된다.

기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델 (Data Mining based Forest Fires Prediction Models using Meteorological Data)

  • 김삼근;안재근
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.521-529
    • /
    • 2020
  • 산불은 경제, 자연환경, 건강과 같은 삶의 여러 측면에서 몇 가지 악영향을 주는 가장 핵심적인 환경위험 중의 하나이다. 산불의 조기발견, 빠른 예측, 신속한 대응은 산불 위험으로부터 재산과 생명을 구하는데 본질적인 역할을 할 수 있다. 산불의 빠른 발견을 위해 기상청에서 각 지역에 설치한 로컬 센서를 통해 획득한 기상 데이터를 이용하는 방법이 있다. 기상 조건(예: 온도, 바람)은 산불 발생에 영향을 미친다고 알려져 있다. 본 논문에서는 산불의 피해 면적을 예측하기 위해 데이터 마이닝(DM) 기법을 적용한다. 다섯 종류의 DM 모델, 예를 들어 Stochastic Gradient Descent(SGD), Support Vector Machines(SVM), Decision Tree(DT), Random Forests(RF), Deep Neural Network(DNN)과 네 가지 입력 특성 그룹(공간, 시간, 기상 데이터 이용)을 최근 5년간의 경기도 지역에서 수집한 실제 산불 발생 데이터에 적용하였다. 실험결과는 기상 데이터만을 이용한 DNN 모델이 가장 우수한 성능을 보였다. 제안한 모델은 빈도수가 높은 작은 규모의 산불 예측에 더 효과적이었다. 제안한 예측 모델을 통해 도출된 이러한 지식은 소방 자원 관리를 개선하는데 특히 유용하다.

Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models

  • Ozcan, Giyasettin;Kocak, Yilmaz;Gulbandilar, Eyyup
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.275-282
    • /
    • 2017
  • The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.

에어비앤비(Airbnb) 웹 로그 데이터를 이용한 고객 행동 예측 (Consumer behavior prediction using Airbnb web log data)

  • 안효인;최유리;오래은;송종우
    • 응용통계연구
    • /
    • 제32권3호
    • /
    • pp.391-404
    • /
    • 2019
  • 그동안의 고객 행동에 대한 예측은 주로 고객이 가지는 고정적인 특성을 이용해왔다. 최근에는 점차 고객들의 활동이 오프라인에서 온라인으로 이동하면서 각 고객의 웹 로그를 추적하는 일이 가능해졌다. 그러나 방대한 양의 웹 로그 데이터를 수집할 수 있게 된 반면, 이에 대한 연구는 로그 데이터를 정리하거나 기술적인 특성만을 설명하는 것에 그쳤다. 본 연구에서는 웹사이트 Kaggle에서 제공하는 Airbnb 고객들의 성별, 연령 등의 기본 정보 및 웹 로그가 포함된 데이터셋을 이용하여 첫 숙소 예약까지 걸리는 개인의 의사 결정 시간을 예측하였다. Lasso, SVM, Random Forest, XGBoost 등 다양한 방법론을 활용하여 최적의 모형을 찾고, 웹 로그 데이터의 유무에 따른 예측 오차를 비교하여 웹 로그의 효용성을 확인하였다. 결과적으로 오분류율이 약 20%로 낮은 랜덤 포레스트 분류모형을 최적모형으로 선택하였다. 또한, 웹 로그 데이터를 이용하여 고객 개개인의 행동을 예측한 결과 사용하지 않은 경우와 비교해 예측의 정확도가 최대 두 배 더 높아진 것을 확인할 수 있었다.

Comparison of Detection Probability for Conventional and Time-Reversal (TR) Radar Systems

  • Yoo, Hyung-Ha;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • 제12권1호
    • /
    • pp.70-76
    • /
    • 2012
  • We compare the detection probabilities of the time-reversal(TR) detection system and the conventional radar system. The target is assumed to be hidden inside a random medium such as a forest. We propose a TR detection system based on the SAR(Synthetic Aperture Radar) algorithm. Unlike the conventional SAR images, the proposed TR-SAR system has an interesting property. Specifically, the target-related signal components due to the time-reversal refocusing characteristics, as well as some of clutter-related signal components are concentrated at the time-reversal reference point. The remaining clutter-related signal components are scattered around that reference point. In this paper, we model the random media as a collection of point scatterers to avoid unnecessary complexities. We calculate the detection probability of the TR radar system based on the proposed simple random media model.