• Title/Summary/Keyword: random finite set

Search Result 43, Processing Time 0.025 seconds

Scaling Down Characteristics of Vertical Channel Phase Change Random Access Memory (VPCRAM)

  • Park, Chun Woong;Park, Chongdae;Choi, Woo Young;Seo, Dongsun;Jeong, Cherlhyun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • In this paper, scaling down characteristics of vertical channel phase random access memory are investigated with device simulator and finite element analysis simulator. Electrical properties of select transistor are obtained by device simulator and those of phase change material are obtained by finite element analysis simulator. From the fusion of both data, scaling properties of vertical channel phase change random access memory (VPCRAM) are considered with ITRS roadmap. Simulation of set reset current are carried out to analyze the feasibility of scaling down and compared with values in ITRS roadmap. Simulation results show that width and length ratio of the phase change material (PCM) is key parameter of scaling down in VPCRAM. Thermal simulation results provide the design guideline of VPCRAM. Optimization of phase change material in VPCRAM can be achieved by oxide sidewall process optimization.

Application of Multi-Layer Perceptron and Random Forest Method for Cylinder Plate Forming (Multi-Layer Perceptron과 Random Forest를 이용한 실린더 판재의 성형 조건 예측)

  • Kim, Seong-Kyeom;Hwang, Se-Yun;Lee, Jang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.5
    • /
    • pp.297-304
    • /
    • 2020
  • In this study, the prediction method was reviewed to process a cylindrical plate forming using machine learning as a data-driven approach by roll bending equipment. The calculation of the forming variables was based on the analysis using the mechanical relationship between the material properties and the roll bending machine in the bending process. Then, by applying the finite element analysis method, the accuracy of the deformation prediction model was reviewed, and a large number data set was created to apply to machine learning using the finite element analysis model for deformation prediction. As a result of the application of the machine learning model, it was confirmed that the calculation is slightly higher than the linear regression method. Applicable results were confirmed through the machine learning method.

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염의 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.18-29
    • /
    • 2004
  • Partial quenching structure of diffusion flames in a turbulent mixing layer has been investigated by the method of flame hole dynamics in oder to develope a prediction model for the phenomenon of turbulent flame lift off. The present study is specifically aimed to remedy the shortcoming of the stiff transition of the conditioned partial burning probability across the crossover condition by employing the level-set method which enables us to include the effect of finite flame edge propagation speed. In light of the level-set simulation results with two models for the edge propagation speed, the stabilizing conditions for turbulent lifted flame are suggested. The flame hole dynamics combined with the level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping based on three critical scalar dissipation rates. The probability to encounter reacting state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate. Such a smooth transition is attributed to the finite response of the flame edge propagation.

  • PDF

The Study on the Cutting Force Prediction in the Ball-End Milling Process at the Random Cutting Area using Z-map (Z-map을 이용한 임의의 절삭영역에서의 볼 엔드밀의 절삭력 예측에 관한 연구)

  • 김규만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.125-129
    • /
    • 1996
  • In this study, a method is proposed for the cutting force prediction of Ball-end milling process using Z-map is proposed. Any types of cutting area generated from previous cutting process can be expressed in z-map data. Cutting edge of a ball-end mill is divided into a set of finite cutting edges and the position of this edge is projected to the cross-section plane normal to the Z-axis. Comparing this projected position with Z-map data of cutting area and determining whether it is in the cutting region, total cutting force can be calculated by means of numerical integration. A series of experiments such as side cutting and upward/downard cutting was performet to verify the simulated cutting force.

  • PDF

A Group Maintenance Model with Extended Operating Horizon (연장된 운용기간을 활용하는 그룹보전모형)

  • Yoo, Young-Kwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.89-95
    • /
    • 2017
  • This paper presents another maintenance policy for a group of units under finite operating horizon. A group of identical units are subject to random failures. Group maintenances are performed to all units together at specified intervals, and the failed units during operation are remained idle until the next group maintenance set-up. Unlike the traditional assumption of infinite operating horizon, we adopt the assumption of the finite operating horizon which reflect the rapid industrial advance and short life cycle of modern times. The units are under operation until the end of the operating horizon. Further, the operation of units are extended to the first group maintenance time after the end of the horizon. The total cost under the proposed maintenance policy is derived. The optimal group maintenance interval and the expected number of group maintenances during the horizon are found. It is shown that the proposed policy is better than the classical group maintenance policy in terms of total cost over the operating horizon. Numerical examples are presented for illustrations.

Performance Analysis of Closed-Loop Production Systems with Random Processing Times and Machine Failures (랜덤가공시간과 기계고장이 존재하는 폐쇄형 생산시스템의 성능분석)

  • 백천현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.47-52
    • /
    • 1999
  • In this paper we propose new approximate method for the performance analysis of closed-loop production system with unreliable machines and random processing times. The approximate method decomposes the production system consisting of K machines into a set of K subsystems, each subsystem consisting of two machines separated by a finite buffer. Then, each subsystem is analyzed by analyzing method n isolation. The population constraint of the closed-loop production system is taken into account by prescribing that the sum of average buffer level in the subsystems is equal to the number of customers in the closed-loop production system,. We establish a set of equations that characterizes unknown parameters of the servers in the subsystems. An iterative procedure is then used to determine the unknown parameters. Experimental results show that these methods provide a good estimation of the throughput.

  • PDF

Performance Analysis for Closed-Loop Production Systems with Unreliable Machines and Random Processing Times (불완전한 기계 및 랜덤가공시간을 갖는 폐쇄형 생산시스템의 성능분석에 관한 연구)

  • Kim, H.G.;Paik, C.H.;Cho, H.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.240-253
    • /
    • 1999
  • In this paper we propose new approximate methods for the performance analysis of closed-loop production systems with unreliable machines and random processing times. Each approximate method decomposes the production system consisting of K machines into a set of K subsystems, each subsystem consisting of two machines separated by a finite buffer. Then, each subsystem is analyzed by three different analyzing methods in isolation. The population constraint of the closed-loop production system is taken into account by prescribing that the sum of average buffer levels in the subsystems is equal to the number of customers in the closed-loop production system. We establish a set of equations that characterize unknown parameters of the servers in the subsystems. An iterative procedure is then used to determine the unknown parameters. Experimental results show that these methods provide a good estimation of the throughput.

  • PDF

ON SELF-SIMILAR STOCHASTIC INTEGRAL PROCESSES

  • Kim, Joo-Mok
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.961-973
    • /
    • 1994
  • A stochastics process $X = {X(t) : t \in T}$, with an index set T, is said to be infinitely divisible (ID) if its finite dimensional distributions are all ID. An ID process X is said to be a stochastic integral process if $X = {X(t) : t \in T} =^D {\int f_td\Lambda : t \in T}$ where $f : T \times S \to R$ is a deterministic function and $\Lambda$ is an ID random measure on a $\delta$-ring S of subsets of an arbitrary non-empty set S with the property; there exists an increasing sequence ${S_n}$ of sets in S with $U_n S_n = S$. Here $=^D$ denotes equality in all finite dimensional distributions.

  • PDF

A LAW OF ITERATED LOGARITHM FOR OCCUPATION TIME BROWNIAN IN ι$_2$

  • Cho, Nhan-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.3
    • /
    • pp.569-579
    • /
    • 1999
  • We consider a random measure defined by the occupation time of Brownian motion in $l_2$. If it is normalized ${\lambda}^2$log then we show that its cluster set as ${\lambda}{longrightarrow}\infty$ can be represented by Ι-function on $\sigma$-finite measure in $l_2$.

  • PDF