• Title/Summary/Keyword: random elastic modulus

Search Result 36, Processing Time 0.021 seconds

Finite element analysis of elastic property of concrete composites with ITZ

  • Abdelmoumen, Said;Bellenger, Emmanuel;Lynge, Brandon;Queneudec-t'Kint, Michele
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.497-510
    • /
    • 2010
  • For better estimation of elastic property of concrete composites, the effect of Interfacial Transition Zone (ITZ) has been found to be significant. Numerical concrete composites models have been introduced using Finite Element Method (FEM), where ITZ is modeled as a thin shell surrounding aggregate. Therefore, difficulties arise from the mesh generation. In this study, a numerical concrete composites model in 3D based on FEM and random unit cell method is proposed to calculate elastic modulus of concrete composites with ITZ. The validity of the model has been verified by comparing the calculated elastic modulus with those obtained from other analytical and numerical models.

Probabilistic Behavior of Laminated Composite Plates with Random Material Properties (재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동)

  • Noh, Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

Prediction of effective stiffness on short fiber reinforced composite materials (단섬유 복합재료의 탄성계수 예측)

  • 임태원;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.611-617
    • /
    • 1991
  • Effective stiffness of short fiber composite with a three-dimensional random orientation of fibers is derived theoretically and compared with available experimental data. The laminate analogy and transformed laminate analogy are used for modulus prediction of 2-D and 3-D random composites, respectively. The effective stiffness of random oriented fiber composite can be expressed in terms of longitudinal and transverse stiffnesses of unidirectional composites. The result of transformed laminate analogy is more accurate than other approaches such as, Christensen-Waals equational and Lavengood-Goettler equation, etc. Also the effective properties of random oriented fiber composite can be expressed in terms of fiber and matrix properties such as elastic modulus, shear modulus and Poisson's ratio.

Parameter Effect on Elastic Modulus of Discontinuity Rock-mass Based on Homogenization Method (균질화 이론에 근거한 불연속성 암반의 탄성계수에 영향을 미치는 불연속면의 조사 인자에 관한 연구)

  • Baek, Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.63-70
    • /
    • 2000
  • The quantitative analyses and the mechanical interpretation of discontinuity planes are the most important factor for the study of strength and deformation properties of rock masses containing discontinuity planes. However, the relationship between the factors investigated in the field and the actual mechanical properties of discontinuity planes is not fully understood. The main purpose of this study is to investigate the effects of density, length, and spacing of joints on elastic modulus of rock masses as these values vary. A new parameter which has a direct relation with the elastic modulus of discontinuity planes is also preposed in this study. The combination of finite element methods and homogenization methods has been used for the numerical analyses of a uintcell with discontinuity planes, which is generated using random-number generation methods. The elastic modulus of the discontinuity plane is found from the numerical analyses. The final results propose not only the relation between the investigation parameters of discontinuity planes and the elastic modulus of rock masses but also a new parameter, an effect area ratio having a linear relation with the elastic modulus of rock masses.

  • PDF

Phase Transformation Effect on Mechanical Properties of Ge2Sb2Te5 Thin Film (Ge2Sb2Te5 박막의 상변화에 의한 기계적 물성 변화)

  • Hong, Sung-Duk;Jeong, Seong-Min;Kim, Sung-Soon;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.326-332
    • /
    • 2005
  • Phase transformation effects on mechanical properties of $Ge_2Sb_2Te_5$, which is a promising candidate material for Phase Change Random Access Memory (PRAM), were studied. $Ge_2Sb_2Te_5$ thin films, which was thermally annealed with different conditions, were analyzed using XRD, AFM, 4-point probe method and reflectance measurement. As the temperature and the dwelling time increased, crystallity and grain size increased, which enhanced elastic modulus and hardness. Furthermore, N2 doping, which was used for better electrical properties, was proved to decrease elastic modulus and hardness of $Ge_2Sb_2Te_5$.

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di;Wang, Tao;Xu, Daqing;Zhou, Guoqing
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2020
  • The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

Response Variability of Laminated Composite Plates with Random Elastic Modulus (탄성계수의 불확실성에 의한 복합적층판 구조의 응답변화도)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.335-345
    • /
    • 2008
  • In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.

Reliability analysis of uncertain structures using earthquake response spectra

  • Moustafa, Abbas;Mahadevan, Sankaran
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.279-295
    • /
    • 2011
  • This paper develops a probabilistic methodology for the seismic reliability analysis of structures with random properties. The earthquake loading is assumed to be described in terms of response spectra. The proposed methodology takes advantage of the response spectra and thus does not require explicit dynamic analysis of the actual structure. Uncertainties in the structural properties (e.g. member cross-sections, modulus of elasticity, member strengths, mass and damping) as well as in the seismic load (due to uncertainty associated with the earthquake load specification) are considered. The structural reliability is estimated by determining the failure probability or the reliability index associated with a performance function that defines safe and unsafe domains. The structural failure is estimated using a performance function that evaluates whether the maximum displacement has been exceeded. Numerical illustrations of reliability analysis of elastic and elastic-plastic single-story frame structures are presented first. The extension of the proposed method to elastic multi-degree-of-freedom uncertain structures is also studied and a solved example is provided.