• Title/Summary/Keyword: random dynamics

Search Result 211, Processing Time 0.035 seconds

Vibration Behavior of a Rotating Brush Roll in Contact with a Solid Roll (강체롤과 접촉 회전하는 브러시롤의 진동 현상)

  • 허주호
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.499-509
    • /
    • 1997
  • During the process of oxide removal from work rolls in sheet metal manufacture, filamentary brushes frequently exhibit a bouncing or chatter behavior. The dynamics of this phenomenon is investigated through the development of expressions for the non-linear contact stiffness between the brush and the roll. With formulation of simple structural models, the time responses in the presence and absence of friction under random excitation are investigated. Possible solutions for the minimization or avoidance of this bouncing or chatter problem are also suggested.

  • PDF

A study on the LQG control in wind power systems (풍력발전시스템에서의 LQG 제어에 관한 연구)

  • Kim, Ho-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.603-605
    • /
    • 1999
  • In this paper, the aspects on modeling and control of an existing wind turbine are discussed. When designing control for variable-speed wind turbine, one deals with highly resonant, nonlinear dynamic systems subject to random excitation, i.e. wind turbulence. This requires good knowledge of the dynamics to be controlled. This paper describes an mathematical modeling of wind turbines with emphasis on control design for an existing wind turbine.

  • PDF

PAQM: an Adaptive and Proactive Queue Management for end-to-end TCP Congestion Control

  • Ryu Seung Wan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.417-424
    • /
    • 2003
  • In this paper, we introduce and analyze a feedback control model of TCP/AQM dynamics. Then, we propose the Pro-active Queue Management (PAQM) mechanism, which can provide proactive congestion avoidance and control using an adaptive congestion indicator and a control function for wide range of traffic environments. The PAQM stabilizes the queue length around a desired level while giving smooth and low packet loss rates independent of the traffic load level under a wide range of traffic environment. The PAQM outperforms other AQM algorithms such as Random Early Detection (RED) [1] and PI-controller [2]

  • PDF

LQG/LTR controller design for ground alignment of intertial platform

  • Kim, Jong-Kwon;Shin, Yong-Jin;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.372-375
    • /
    • 1995
  • The LQG/LTR controller design procedure for ground alignment of inertial platform is accomplished. Due to the alignment system dynamics, LQG/LTR controller is proposed to overcome both singular problem and nonsquare problem. To show the effectiveness of this control system, computer simulation was performed under the assumption of random sway motion.

  • PDF

A study of distillation column control by using a neural controller (신경제어기를 이용한 증류탑의 제어에 관한 연구)

  • 이문용;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.234-239
    • /
    • 1990
  • A neural controller for process control was proposed that combines a simple feedback controller with a neural network. This control was applied to distillation control. The feedback error learning technique was used for on-line learning. Important characteristics on neural controller were analyzed. The proposed neural controller can cope well with strong interactions, significant time delays, sudden changes in process dynamics without any prior knowledge of the process. It was shown that the neural controller has good features such as fault tolerance, interpolation effect and random learning capability

  • PDF

Numerical Simulation of Supercritical $CO_2$ Flow in a Geological Storage Reservoir of Ocean (해양 지중저장층내 초임계 $CO_2$ 유동에 대한 전산모사)

  • Choi, Hang-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.251-257
    • /
    • 2011
  • In the present study, a 3-dimensional (3D) numerical model was developed to mimic the micro porous structure of a geological $CO_2$ storage reservoir. Especially, 3D modeling technique assigning random pore size to a 3D micro porous structure was devised. Numerical method using CFD (computational fluid dynamics) was applied for the 3D micro porous structure to calculate supercritical $CO_2$ flow field. The three different configurations of 3D micro porous model were designed and their flow fields were calculated. For the physical conditions of $CO_2$ flow, temperature and pressure were set up equivalent to geological underground condition where $CO_2$ fluid was stored. From the results, the characteristics of the supercritical $CO_2$ flow fields were scrutinized and the influence of the micro pore configuration on the flow field was investigated. In particular, the pressure difference and consequent $CO_2$ permeability were calculated and compared with increasing $CO_2$ flow rate.

E-Business and Simulation

  • Park, Sung-Joo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.9-10
    • /
    • 2001
  • Simulation has been evolved with the advance of computer and technique of modeling application systems. Early simulations were numerical analysis of engineering models known as continuous simulation, analysis of random events using various random number generators thus named as Monte Carlo simulation, iud analysis o(\\\\`queues which are prevalent in many real world systems including manufacturing, transportation, telecommunication. Discrete-event simulation has been used far modeling and analyzing the systems with waiting lines and inefficient delays. These simulations, either discrete-event, continuous, or hybrid, have played a key role in industrial age by helping to design and implement the efficient real world systems. In the information age which has been brought up by the advent of Internet, e-business has emerged. E-business, any business using Internet, can be characterized by the network of extended enterprises---extended supply and demand chains. The extension of value chains spans far reaching scope in business functions and space globally. It also extends to the individual customer, customer preferences and behaviors, to find the best service and product fit for each individual---mass customization. Simulation should also play a key role in analyzing and evaluating the various phenomena of e-business where the phenomena can be characterized by dynamics, uncertainty, and complexity. In this tutorial, applications of simulation to e-business phenomena will be explained and illustrated. Examples are the dynamics of new economy, analysis of e-business processes, virtual manufacturing system, digital divide phenomena, etc. Partly influenced by e-business, a new trend of simulation has emerged called agent-based simulation, Agent-based simulation is a technique of simulation using software agent that have autonomy and proactivity which are useful in analyzing and integrating numerous individual customer's behavior. One particular form of agent-based simulation is swarm. This tutorial concludes with the illustration of swarm or swarm Intelligence applied to various e-business applications, and future directions and implications of this new trend of simulation.

  • PDF

Energy harvesting from piezoelectric strips attached to systems under random vibrations

  • Trentadue, Francesco;Quaranta, Giuseppe;Maruccio, Claudio;Marano, Giuseppe C.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.333-343
    • /
    • 2019
  • The possibility of adopting vibration-powered wireless nodes has been largely investigated in the last years. Among the available technologies based on the piezoelectric effect, the most common ones consist of a vibrating beam covered by electroactive layers. Another energy harvesting strategy is based on the use of piezoelectric strips attached to a hosting structure subjected to dynamic loads. The hosting structure, for example, can be the system to be equipped with wireless nodes. Such strategy has received few attentions so far and no analytical studies have been presented yet. Hence, the original contribution of the present paper is concerned with the development of analytical solutions for the electrodynamic analysis and design of piezoelectric polymeric strips attached to relatively large linear elastic structural systems subjected to random vibrations at the base. Specifically, it is assumed that the dynamics of the hosting structure is dominated by the fundamental vibration mode only, and thus it is reduced to a linear elastic single-degree-of-freedom system. On the other hand, the random excitation at the base of the hosting structure is simulated by filtering a white Gaussian noise through a linear second-order filter. The electromechanical force exerted by the polymeric strip is negligible compared with other forces generated by the large hosting structure to which it is attached. By assuming a simplified electrical interface, useful new exact analytical expressions are derived to assess the generated electric power and the integrity of the harvester as well as to facilitate its optimum design.

Packaging Design of EPS Cooling Box by Theoretical Heat Flow and Random Vibration Analysis (이론적 열유동 및 랜덤 진동 해석을 적용한 EPS 보냉용기의 포장설계)

  • Kim, Su-Hyun;Park Sang-Hoon;Lee, Min-A;Jung, Hyun-Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • Although it has recently been regulated for use as an eco-friendly policy in Korea, the use of EPS (Expanded Polystyrene) cooling boxes, which are used as cold chain delivery insulation boxes for fresh agricultural and livestock products, is also increasing rapidly as e-commerce logistics such as delivery have increased rapidly due to COVID-19. Studies were conducted to optimize the EPS cooling container through internal air heat flow of CFD (Computational Fluid Dynamics) analysis and FEM (Finite Element Method) random vibration analysis using domestic PSD (Power Spectral Density) profile of the EPS cooling box to which the refrigerant is applied in this study. In the analysis of the internal air heat flow by the refrigerant in the EPS cooling box, the application of vertical protrusions inside was excellent in volume heat flow and internal air temperature distribution. In addition, as a result of random vibration analysis, the internal vertical protrusion gives the rigid effect of the cooling box, so that displacement and stress generation due to vibration during transport are smaller than that of a general cooling container without protrusion. By utilizing the resonance point (frequency) of the EPS cooling box derived by the Model analysis of ANSYS Software, it can be applied to the insulation and cushion packaging design of the EPS product line, which is widely used as insulation and cushion materials.

Effect of Pore Geometry on Gas Adsorption: Grand Canonical Monte Carlo Simulation Studies

  • Lee, Eon-Ji;Chang, Rak-Woo;Han, Ji-Hyung;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.901-905
    • /
    • 2012
  • In this study, we investigated the pure geometrical effect of porous materials in gas adsorption using the grand canonical Monte Carlo simulations of primitive gas-pore models with various pore geometries such as planar, cylindrical, and random pore geometries. Although the model does not possess atomistic level details of porous materials, our simulation results provided many insightful information in the effect of pore geometry on the adsorption behavior of gas molecules. First, the surface curvature of porous materials plays a significant role in the amount of adsorbed gas molecules: the concave surface such as in cylindrical pores induces more attraction between gas molecules and pore, which results in the enhanced gas adsorption. On the contrary, the convex surface of random pores gives the opposite effect. Second, this geometrical effect shows a nonmonotonic dependence on the gas-pore interaction strength and length. Third, as the external gas pressure is increased, the change in the gas adsorption due to pore geometry is reduced. Finally, the pore geometry also affects the collision dynamics of gas molecules. Since our model is based on primitive description of fluid molecules, our conclusion can be applied to any fluidic systems including reactant-electrode systems.