• Title/Summary/Keyword: random dot tracking

Search Result 1, Processing Time 0.025 seconds

Performance Optimization of LLAH for Tracking Random Dots under Gaussian Noise (가우시안 잡음을 가지는 랜덤 점 추적을 위한 LLAH의 성능 최적화)

  • Park, Hanhoon
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • Unlike general texture-based feature description algorithms, Locally Likely Arrangement Hashing (LLAH) algorithm describes a feature based on the geometric relationship between its neighbors. Thus, even in poor-textured scenes or large camera pose changes, it can successfully describe and track features and enables to implement augmented reality. This paper aims to optimize the performance of LLAH algorithm for tracking random dots (= features) with Gaussian noise. For this purpose, images with different number of features and magnitude of Gaussian noise are prepared. Then, the performance of LLAH algorithm according to the conditions: the number of neighbors, the type of geometric invariants, and the distance between features, is analyzed, and the optimal conditions are determined. With the optimal conditions, each feature could be matched and tracked in real-time with a matching rate of more than 80%.