일반화된 해밍무게는 선형부호의 중요한 파라미터의 하나로써 암호시스템에 적용할 때 부호의 성능을 결정한다. 그리고 격자도를 이용하여 블록부호를 연판정으로 복호할 때 구현에 필요한 상태복잡도를 평가하는 척도가 되기도 함으로써 그 중요성이 한층 부각되고 있다. 특별히 삼항다항식을 기반으로 하는 유한체 상의 비트-병렬 곱셈기에 대한 연구가 진행되어왔다. 셀룰라오토마타(Cellular Automata, 이하 CA)는 국소적 상호작용에 의해 상태가 동시에 업데이트되는 성질이 있어서 LFSR보다 랜덤성이 우수하다. 본 논문에서는 효과적인 암호시스템 설계에 있어 중요한 요소 중 하나인 의사난수열 생성기의 효과적 합성에 관하여 다룬다. 먼저 간단한 90/150 전이규칙 블록의 특성 다항식의 성질을 분석하고, 이 규칙블록을 이용하여 삼항다항식 $x^2^n+x^{2^n-1}+1$($n{\geq}2$)에 대응하는 가역 90/150 CA와 $2^n$차 최대무게다항식에 대응하는 90/150 가역 CA(RCA)의 합성알고리즘을 제안한다.
지하수함양은 시공간적으로 다양하여 직접적으로 측정하기 어렵기 때문에 함양추정을 위해 수치모델이 널리 사용되고 있다. 이 연구에서는 지하수함양을 추정하기 위한 방법으로 기계학습법의 하나인 분류회귀트리(CART)모형을 적용하기 위해 수정된 수직식생지수(mPVI), 정규식생지수(NDVI), 정규경작지수(NDTI), 정규나지지수(NDRI) 같은 토양-식생관련 지수와 강우, 지형인자(고도, 경사, 경사방향)를 입력하고 김천지역 SWAT-MODFLOW의 함양량 결과를 추출 및 학습하여 함양량을 예측하였다. SWAT-MODFLOW의 함양량 분포에 대한 CART모형의 예측값의 전반적인 정확도는 0.5~0.7, 카파계수는 0.3~0.6으로 나타나 위성영상자료를 통해 토양-식생에 따른 함양량 변화를 합리적으로 예측할 수 있었다.
본 논문은 가산성 잡음이 존재할 경우 모노펄스 알고리즘의 성능분석을 해석적으로 분석한 연구이다. 이전 연구에서는 1차 테일러 급수 전개와 2차 테일러 급수 전개를 통한 진폭비교 모노펄스 알고리즘의 해석적 성능 분석을 진행했다. 본 연구에는 3차 테일러 전개기반 해석적 분석법을 적용하여 1차 및 2차 테일러 근사기반의 해석적 분석보다 실제 모노펄스 알고리즘의 성능 분석 결과에 다가가는 것을 보인다. 성능분석은 평균제곱오차(Mean Squre Error)을 통해 분석되며 몬테카를로(Monte-Calro) 방법을 통한 시뮬레이션 MSE와 3차 테일러 근사기반 해석적 MSE를 서로 비교한다. 3차 테일러 근사기반 해석적 MSE를 적용하였을 경우, 이전 연구에서 제안된 2차 테일러 근사기반의 해석적 MSE의 오차를 89.5% 감소시킨다. 또한 몬테카를로 기반 MSE보다 모든 경우에서 빠른 결과를 보인다. 해당 연구를 통해 잡음 재밍이 적용된 환경에서 모노펄스 레이더의 추정 각도 능력을 명시적으로 분석이 가능하다.
RNA 시퀀싱 데이터 (RNA-seq)에서 수집된 많은 양의 데이터에 변별력이 확실한 특징 패턴 선택이 유용하며, 차별성 있는 특징을 정의하는 것이 쉽지 않다. 이러한 이유는 빅데이터 자체의 특징으로써, 많은 양의 데이터에 중복이 포함되어 있기 때문이다. 해당이슈 때문에, 컴퓨터를 사용하여 처리하는 분야에서 특징 선택은 랜덤 포레스트, K-Nearest, 및 서포트-벡터-머신 (SVM)과 같은 다양한 머신러닝 기법을 도입하여 해결하려고 노력한다. 해당 분야에서도 SVM-기반 제약을 사용하는 서포트-벡터-머신-재귀-특징-제거(SVM-RFE) 알고리즘은 많은 연구자들에 의해 꾸준히 연구 되어 왔다. 본 논문의 제안 방법은 RNA 시퀀싱 데이터에서 빅-데이터처리를 위해 SVM-RFE에 강화학습의 Q-learning을 접목하여, 중요도가 추가되는 벡터를 세밀하게 추출함으로써, 변별력이 확실한 특징선택 방법을 제안한다. NCBI-GEO와 같은 빅-데이터에서 공개된 일부의 리보솜 단백질 클러스터 데이터에 본 논문에서 제안된 알고리즘을 적용하고, 해당 알고리즘에 의해 나온 결과와 이전 공개된 SVM의 Welch' T를 적용한 알고리즘의 결과를 비교 평가하였다. 해당결과의 비교가 본 논문에서 제안하는 알고리즘이 좀 더 나은 성능을 보여줌을 알 수 있다.
적 방공망 제압 임무는 현대전에서 전략적으로 중요한 임무이지만 적 방공자산에 직접적으로 노출될 위험이 높아 위험 부담이 크다. 따라서, 무인기를 활용하여 임무를 수행하는 것이 하나의 대안으로 제시된다. 본 논문에서는 무인기의 적 방공망 제압 임무 수행을 위한 경로 생성 기법과 생성된 경로에 대한 임무 효과도 산출 기법을 제안한다. 먼저, RRT 기반의 경로 탐색 알고리즘을 기반으로 적의 단거리 대공 위협을 고려할 수 있는 저공 침투/이탈 비행 경로 기법을 다룬다. 또한, 최단의 경로이면서 동시에 적의 단거리 대공 위협을 최대한 회피하는 표적 타격 경로를 생성하기 위해 Dubins 경로 기반의 타격 경로 생성 기법이 사용된다. 이를 통해 생성된 침투/타격/이탈 경로를 순서에 따라 통합한다. 통합된 경로를 기반으로 연료소모량, 무인기의 생존 확률, 임무 수행 소요 시간, 그리고 표적 파괴 확률로 이루어진 임무 효과도를 산출한다. 마지막으로, 제안된 적 방공망 제압 임무 경로 생성 기법 및 임무 효과도 산출 기법을 가상 시나리오를 통해 검증한다.
기후변화 감시에 위성 자료 활용을 위해 GCOS (Global Climate Observing System)는 시공간 해상도, 시간 변화에 따른 안정성, 불확실도 등의 요구사항을 제시하고 있다. 천리안위성 2A호의 경우, 센서의 한계로 인해 산출물들이 공간해상도 조건에 충족하지 못하는 경우가 많다. 따라서 본 연구에서는 영상융합 기법들을 천리안위성 2A호 영상에 적용하여 산출물 생성 시 활용될 수 있는 최적의 기법을 찾고자 한다. 이를 위해 CS (Component Substitution), MRA (Multiresolution Analysis), VO (Variational Optimization), DL (Deep Learning)에 포함되는 총 6가지 영상융합 기법을 활용하였다. DL의 경우 합성적(Synthesis) 특성 기반 방법을 훈련자료 구축에 사용하였다. 합성적 특성 기반 방법의 과정은 PAN (Panchromatic)과 MS (Multispectral) 영상의 공간해상도 차이만큼 두 영상의 해상도를 낮춰 융합 영상을 생성한 후 원본 MS 영상과 비교한다. 합성적 특성 기반 방법은 공간해상도를 저하시킨 PAN 영상과 MS 영상 간 기하 특성이 같아야 사용자가 원하는 수준의 융합 영상을 제작할 수 있다. 하지만, 훈련자료 구축 시 비유사성이 존재하기에 이를 최소화하는 방법으로 무작위 비율을 활용한 PSGAN 모델(PSGAN_RD)을 추가로 활용하였다. 융합 영상의 검증은 일관성(consistency) 및 합성적 특성 기반 정성적, 정량적 분석을 수행하였다. 분석 결과, 영상융합 알고리즘 중 GSA가 공간 유사도를 나타내는 평가지수에서 가장 높은 수치를 보였으며, 분광 유사도를 나타내는 지수들은 PSGAN_RD 모델의 정확도가 가장 높았다. 융합 영상의 공간 및 분광 특성을 모두 고려한다면 PSGAN_RD 모델이 천리안위성 2A호 산출물 제작에 가장 최적일 것으로 판단하였다.
2020년 하반기부터 2021년 초까지 발생한 조류인플루엔자의 여파로 1,780만수의 산란계가 살처분되면서 계란 공급 부족으로 계란 1판에 1만원을 넘는 사태가 벌어지기도 했다. 이에 정부는 물가 안정 대책으로 1,000억원 이상의 국고를 계란 수입에 투입하였지만, 계란 가격의 안정화는 쉽지 않았다. 계란 가격의 급격한 변동성은 소비자와 양계농가 모두에게 부정적인 영향을 미치므로 계란 가격의 안정화 방안을 위한 대책이 필요하다. 이를 위해 본 연구에서는 머신러닝 회귀분석 알고리즘을 활용하여 계란 가격을 예측하였으며, 가격 예측을 위해서 대한양계협회 2012~2021년도의 월간 산란계 생산통계와 국가통계포털(KOSIS)의 도축실적 등 총 8개의 독립변수를 선택하였다. 실제 가격과 모델에 의한 예측 가격의 차이를 나타내는 평균 제곱근 오차(RMSE)는 약 103원이며, 이는 개발된 모델이 계란 가격을 비교적 잘 예측한 결과라고 판단된다. 정확한 계란 가격 예측은 산란계 계란 생산주령의 유연한 조정과 산란계 입식에 대한 의사결정을 도울 수 있고, 계란 가격 안정성 확보에 도움을 줄 것으로 보인다.
우리나라의 주력 산업 중 하나였던 정보통신 및 가전 산업은 점차 수출 비중이 낮아지는 등 수출 경쟁력이 약화되고 있다. 본 연구는 이런 정보통신 및 가전 산업의 수출 제고를 돕기 위해서 객관적으로 수출경쟁력을 분석하고 수출 유망국가를 제시하고자 했다. 본 연구는 수출경쟁력 평가를 위해서 네트워크 분석 중 구조적 특징, 중심성 그리고 구조적 공백 분석을 수행했다. 유망 수출 국가를 선정하기 위해서는 기존에 경제적 요인 외에도 이미 형성된 글로벌 무역 네트워크(ITN) 즉 글로벌 밸류체인(GVC)의 특성을 고려할 수 있는 새로운 변수를 제안했다. 국가간 무역 네트워크 분석에서 Exponential Random Graph Model(ERGM)을 통해 도출된 개별적인 링크에 대한 조건부 로짓값(log-odds)을 수출가능성을 나타낼 수 있는 대리변수로 가정했다. 이런 ERGM의 링크 연결 가능성까지 고려해 수출 유망국가를 추천하는 데는 모수적 접근 방법과 비모수적 접근 방법을 각각 활용했다. 모수적 방법에서는 ERGM에서 도출된 네트워크의 링크별 특성값을 기존의 경제적 요인에 추가 고려하여 우리나라 정보통신 및 가전 산업 수출액을 예측하는 회귀분석 모형을 개발했다. 또한 비모수적 접근 방법에서는 클러스터링 방법을 바탕으로 한 Abnormality detection 알고리즘을 활용했는데, 2개 Peer(동배)에서 벗어난 이상값을 찾는 방법으로 수출 유망국가를 제안했다. 연구 결과에 따르면, 해당 산업 수출 네트워크의 구조적 특징은 이전성이 높은 연결망이었으며, 중심성 분석결과에 따르면 우리나라는 수출에 규모에 비해서 영향력이 약한 것으로 나타났고, 구조적 공백 분석결과에서 수출 효율성이 약한 것으로 나타났다. 본 연구가 제안한 추천모델에 따르면 모수 분석에서는 이란, 아일랜드, 북마케도니아, 앙골라, 파키스탄이 유망 수출 국가로 나타났으며, 비모수 분석에서는 카타르, 룩셈부르크, 아일랜드, 북마케도니아, 파키스탄이 유망 국가로 분석되었으며, 분석방법에 따라 추천된 국가에서는 일부 차이가 나타났다. 본 연구결과는 GVC에서 우리나라 정보통신과 가전 산업의 수출경쟁력이 수출 규모에 비해서 높지 않음을 밝혔고, 따라서 수출이 더욱 감소될 수 있음을 보였다. 또한 본 연구는 이렇게 약화된 수출경쟁력을 높일 수 있는 방안으로 다른 국가들과의 GVC 네트워크까지 고려해 수출유망 국가를 찾는 방법을 제안했다는데 의의가 있다.
본 연구에서는 국가의 연구개발활동조사에서 기업연구개발활동 통계에 대한 효과적인 산출방법을 제시하고자 하였다. 이를 위하여 국내 외 연구개발 통계 방법을 조사한 후 이를 토대로 우리나라에서 기업연구개발활동에 대한 자료의 수집 및 분석에 대한 개선 방안을 제시 하였다. 대부분의 국가에서 대기업은 전수조사, 소규모 기업은 표본조사를 수행하고 있으나, 우리나라에서는 연구소 등록법인에 대하여 전수조사를 행하고 있다. 전수조사는 비용이 많이 들고 비표본오차로 인하여 모집단에 대한 체계적인 추정이 불가능하다는 문제점이 있다. 현재 산업기술진흥협회에 등록된 연구기관의 수가 20,000개를 넘어서고 있어 전수조사는 한계에 다다른 것으로 생각되어 표본조사 도입에 대한 타당성과 방법론을 중점적으로 검토하였다. 먼저, 표본조사의 타당성을 평가하기 위하여 현재 전수조사를 통해 수집된 자료를 이용하여 표본조사를 수행한 결과를 비교 분석하였다. 산업별(24개), 그룹별(8개)로 구분하여 216개 셀별로 모집단수/표본수를 곱하여 산정(셀별추정법)한 결과, 전수 통계치와 거의 동일하게 나타났다. 따라서, 산업별, 그룹별로 세분하여 모집단수/표본수를 곱하여 추정하는 셀별추정법이 타당한 것으로 평가할 수 있다. 이상의 분석결과를 토대로 조사설계 방안을 제시하면 다음과 같다. 직전연도 조사기업은 직전연도 연구개발비 수준과 기업종류(대기업, 벤처기업, 중소기업), 그리고 산업에 따라 셀을 분할한다. 대기업, 연구개발비 수준이 높은 기업 등 주요한 셀에 대하며는 전수조사를 실시한다. 나머지 셀에 대하여는 각 셀별 연구개발지출의 분포가 동질적이기 때문에 표본 추출 방법은 단순임의추출법(SRS)을 사용한다. 다만 전년도 미계상된(또는 미포함된) 기업에 대하여는 신규 대형 연구소 진입 등을 고려하여 규모비례확률추출법(PPS)을 고려하는 것이 바람직할 것으로 판단된다. 일부 기업들이 특정 항목에 대한 자료를 제공하지 않는 항목무응답의 경우, 누락된 자료에 대하여는 대체기법(Imputation Algorithm)에 따라 이를 추정한다. 이러한 표본조사방법은 전수조사에서 발생하는 비표본오차를 해소하고, 자료 수집비용 및 소규모기업의 행정적 부담을 경감할 수 있다는 장점이 있다. 향후 연구에서는 좀 더 구체적인 조사방법론을 강구할 필요가 있으며, 이와 함께, 연구개발에 대한 다양한 측면의 정보를 수집하기 위해 새로운 설문지를 개발할 필요성이 있다.
Forel-Ule Index (FUI)는 자연에 존재하는 담수 및 해수의 색을 남색부터 고동색까지 21 가지의 등급으로 구분하는 지표이다. FUI는 여러 선행연구에서 수계의 부영양화 지수, 수질인자, 광 특성 등과 연관 지어 분석되었으며, 여러 수질인자의 광학적 정보를 동시에 가지고 있는 새로운 수질 지표로써의 가능성이 제시되었다. 본 연구에서는 500 m의 높은 공간해상도를 가지는 정지궤도 해양위성해색탑재체(Geostationary Ocean Color Imager; GOCI) 관측 자료와 Random Forest (RF) 기계학습 기법을 활용하여 Ocean Colour-Climate Change Initiative(OC-CCI) 기반의 4 km FUI 자료를 공간 상세화 시켰다. 이를 활용하여 우리나라 연안 해역에 대한 수질인자와의 상관관계와 주요 해역에 대한 FUI의 공간적 분포 및 계절별 특성 변화를 분석하였다. 검증 결과 RF 기법으로 추정한 RF FUI는 결정계수(R2)=0.81, 평균 제곱근 오차(Root Mean Square Error; RMSE)=0.7784로, Pitarch의 OC-CCI FUI 알고리즘을 적용하여 계산한 GOCI FUI 추정 정확도(R2=0.72, RMSE=0.9708) 대비 향상된 결과를 보였다. RF FUI는 총 질소(Total Nitrogen), 총 인(Total Phosphorus), 클로로필-a(Chlorophyll-a), 총 부유물질(Total Suspended Solids), 투명도(Secchi Disk Depth)를 포함하는 5가지 수질인자와 각각 0.87, 0.88, 0.97, 0.65, -0.98의 상관계수로 강한 상관성을 보였다. 산출된 FUI의 시간적 패턴 역시 여러 수질인자와의 물리적 관계를 반영하며 유의미한 계절적 패턴의 변화를 보였다. 본 연구의 결과로 한반도 연안 수질 관리에서 고해상도 FUI의 활용 가능성을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.