• Title/Summary/Keyword: random access scheduling

Search Result 22, Processing Time 0.026 seconds

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

Transient Coordinator: a Collision Resolution Algorithm for Asynchronous MAC Protocols in Wireless Sensor Networks

  • Lee, Sang Hoon;Park, Byung Joon;Choi, Lynn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3152-3165
    • /
    • 2012
  • Wireless sensor networks (WSN) often employ asynchronous MAC scheduling, which allows each sensor node to wake up independently without synchronizing with its neighbor nodes. However, this asynchronous scheduling may not deal with collisions due to hidden terminals effectively. Although most of the existing asynchronous protocols exploit a random back-off technique to resolve collisions, the random back-off cannot secure a receiver from potentially repetitive collisions and may lead to a substantial increase in the packet latency. In this paper, we propose a new collision resolution algorithm called Transient Coordinator (TC) for asynchronous WSN MAC protocols. TC resolves a collision on demand by ordering senders' transmissions when a receiver detects a collision. To coordinate the transmission sequence both the receiver and the collided senders perform handshaking to collect the information and to derive a collision-free transmission sequence, which enables each sender to exclusively access the channel. According to the simulation results, our scheme can improve the average per-node throughput by up to 19.4% while it also reduces unnecessary energy consumption due to repetitive collisions by as much as 91.1% compared to the conventional asynchronous MAC protocols. This demonstrates that TC is more efficient in terms of performance, resource utilization, and energy compared to the random back-off scheme in dealing with collisions for asynchronous WSN MAC scheduling.

Performance Evaluation of the HIPERLAN Type 2 Media Access Control Protocol (HIPERLAN 타입 2 매체접근제어 프로토콜의 성능평가)

  • Cho, Kwang-Oh;Park, Chan;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1B
    • /
    • pp.11-17
    • /
    • 2003
  • In this paper, we presented the dynamic random access channel allocation method under the priority based scheduling policy in order to improve the system performance of HIPERLAN/2 standardized by ETSI According to the scheduling policy, AP scheduler primarily allocates the resource to the collision MT This scheduling policy bring about decreasing the transmission delay of collision MT Dynamic RCH(random access channel) allocation method decreases the collision probability by increasing the number of RCH slots in case of low traffic. While it increases the maximum throughput by increasing the number of the data transmission slots in case of high traffic Therefore dynamic allocation method of RCH slots decreases the scheduling delay and increases the throughput When we evaluate the performance of presented method based on standards, we saw that the presented method improve the performance of the MAC protocol in terms of throughput and transmission delay.

Hybrid Multiple Access for Uplink OFDMA System

  • Jung, Bang-Chul;Kang, Min-Suk;Ban, Tae-Won
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2012
  • We propose a hybrid multiple access (HMA) for uplink orthogonal frequency division multiple access (OFDMA) systems, which combines two resource sharing schemes: a scheduling-based resource allocation (SBRA) scheme and a contentionbased resource allocation (CBRA) scheme. The SBRA scheme is appropriate for non-real time high data rate traffic, and, CBRA is appropriate for near-real time low/medium data rate traffic. Thus, the proposed HMA scheme supports various types of traffic. As a CBRA scheme, our proposed random frequency hopping (RFH)-OFDMA scheme was presented. Simulation results show that the proposed HMA yields the best performance among various resource allocation schemes for uplink OFDMA systems.

Downlink-First Scheduling of Real-Time Voice Traffic in IEEE 802.11 Wireless LANs (무선랜 시스템에서의 하향 우선 실시간 음성 트래픽 스케줄링)

  • Jeong, Dong W.;Lee, Chae Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.150-156
    • /
    • 2003
  • The IEEE 802.11 MAC (Media Access Control) Protocol supports two modes of operation, a random access mode for nonreal-time data applications processed by Distributed Coordinated Function (DCF), and a polling mode for real-time applications served by Point Coordinated Function (PCF). It is known that the standard IEEE 802.11 is insufficient to serve real-time traffic. To provide Quality of Service (QoS) of real-time traffic, we propose the Downlink-first scheduling with Earliest Due Date (EDD) in Contention Free Period (CFP) with suitable admission control. The capacity and deadline violation probability of the proposed system is analyzed and compared to the standard pair system of downlink and uplink. Analytical and simulation results show that the proposed scheme is remarkably efficient in view of the deadline violation probability.

On the Multiuser Diversity in SIMO Interfering Multiple Access Channels: Distributed User Scheduling Framework

  • Shin, Won-Yong;Park, Dohyung;Jung, Bang Chul
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • Due to the difficulty of coordination in the cellular uplink, it is a practical challenge how to achieve the optimal throughput scaling with distributed scheduling. In this paper, we propose a distributed and opportunistic user scheduling (DOUS) that achieves the optimal throughput scaling in a single-input multiple-output interfering multiple-access channel, i.e., a multi-cell uplink network, with M antennas at each base station (BS) and N users in a cell. In a distributed fashion, each BS adopts M random receive beamforming vectors and then selects M users such that both sufficiently large desired signal power and sufficiently small generating interference are guaranteed. As a main result, it is proved that full multiuser diversity gain can be achieved in each cell when a sufficiently large number of users exist. Numerical evaluation confirms that in a practical setting of the multi-cell network, the proposed DOUS outperforms the existing distributed user scheduling algorithms in terms of sum-rate.

Service Prediction-Based Job Scheduling Model for Computational Grid (계산 그리드를 위한 서비스 예측 기반의 작업 스케쥴링 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.29-33
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes the service prediction-based job scheduling model and present its algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts a processing time of each processing component and distributes a job to processing component with minimum processing time. This paper implements the job scheduling model on the DEVSJAVA modeling and simulation environment and simulates with a case study to evaluate its efficiency and reliability Empirical results, which are compared to the conventional scheduling policies such as the random scheduling and the round-robin scheduling, show the usefulness of service prediction-based job scheduling.

  • PDF

A Distributed Sequential Link Schedule Combined with Routing in Wireless Mesh Networks

  • Cha, Jae-Ryong;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.462-465
    • /
    • 2012
  • This letter proposes a new distributed scheduling scheme combined with routing to support the quality of service of real-time applications in wireless mesh networks. Next, this letter drives average end-to-end delay of the proposed scheduling scheme that sequentially schedules the slots on a path. Finally, this letter simulates the time division multiple access network for performance comparison. From the simulation results, when the average number of hops is 2.02, 2.66, 4.1, 4.75, and 6.3, the proposed sequential scheduling scheme reduces the average end-to-end delay by about 28%, 10%, 17%, 27%, and 30%, respectively, compared to the conventional random scheduling scheme.

Petri Net Modeling and Analysis for Periodic Job Shops with Blocking

  • Lee, Tae-Eog;Song, Ju-Seog
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.314-314
    • /
    • 1996
  • We investigate the scheduling problem for periodic job shops with blocking. We develop Petri net models for periodic job shops with finite buffers. A buffer control method would allow the jobs to enter the input buffer of the next machine in the order for which they are completed. We discuss difficulties in using such a random order buffer control method and random access buffers. We thus propose an alternative buffer control policy that restricts the jobs to enter the input buffer of the next machine in a predetermined order. The buffer control method simplifies job flows and control systems. Further, it requires only a cost-effective simple sequential buffer. We show that the periodic scheduling model with finite buffers using the buffer control policy can be transformed into an equivalent periodic scheduling model with no buffer, which is modeled as a timed marked graph. We characterize the structural properties for deadlock detection. Finally, we develop a mixed integer programming model for the no buffer problem that finds a deadlock-free optimal sequence that minimizes the cycle time.

  • PDF

Development of a Real-time Communication Service over Random Medium Access Scheme Networks

  • Choo, Young-Yeol;Kwon, Jang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.350-353
    • /
    • 2004
  • The increasing use of Ethernet-TCP/IP network in industry has led to the growing interest in its reliability in real-time applications such as automated manufacturing systems and process control systems. However, stochastic behavior of its medium access scheme makes it inadequate for time-critical applications. In order to guarantee hard real-time communication service in Ethernet-TCP/IP network, we proposed an algorithm running over TCP/IP protocol stack without modification of protocols. In this paper, we consider communication services guaranteeing deadlines of periodic real-time messages over MAC protocols that have unbounded medium access time. We propose a centralized token scheduling scheme for multiple access networks. The token is used to allow a station to transmit its message during the time amount that is appended to the token. The real-time performance of the proposed algorithm has been described.

  • PDF