• Title/Summary/Keyword: raman spectroscopy

Search Result 1,144, Processing Time 0.026 seconds

Synthesis and Characterization of Highly Crystalline Anatase Nanowire Arrays

  • Zhao, Yong-Nan;Lee, U-Hwang;Suh, Myung-Koo;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1341-1345
    • /
    • 2004
  • We developed a novel synthesis strategy of titania nanowire arrays by employing simple hydrothermal reaction and ion-exchange reaction techniques. Hydrothermal reactions of metallic titanium powder with $H_2O_2$ in a 10 M NaOH solution produced a new sodium titanate compound, $Na_2Ti_6O_{13}{\cdot}xH_2O$ (x~4.2), as arrays of nanowires of lengths up to 1 mm. Acid-treatment followed by calcination of this material produced arrays of highly crystalline anatase nanowires as evidenced by x-ray diffraction, Raman spectroscopy, and transmission electron microscopy studies. In both cases of sodium titanate and anatase, the nanowires have exceptionally large aspect ratios of 10,000 or higher, and they form arrays over a large area of $1.5 {\times} 3 cm^2$. Observations on the reaction products with varied conditions indicate that the array formation requires simultaneously controlled formation and crystal growth rates of the $Na_2Ti_6O_{13}{\cdot}xH_2O$ phase.

Synthesis of Si Nanowire/Multiwalled Carbon Nanotube Core-Shell Nanocomposites (실리콘 나노선/다중벽 탄소나노튜브 Core-Shell나노복합체의 합성)

  • Kim, Sung-Won;Lee, Hyun-Ju;Kim, Jun-Hee;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • Si nanowire/multiwalled carbon nanotube nanocomposite arrays were synthesized. Vertically aligned Si nanowire arrays were fabricated by Ag nanodendrite-assisted wet chemical etching of n-type wafers using $HF/AgNO_3$ solution. The composite structure was synthesized by formation of a sheath of carbon multilayers on a Si nanowire template surface through a thermal CVD process under various conditions. The results of Raman spectroscopy, scanning electron microscopy, and high resolution transmission electron microcopy demonstrate that the obtained nanocomposite has a Si nanowire core/carbon nanotube shell structure. The remarkable feature of the proposed method is that the vertically aligned Si nanowire was encapsulated with a multiwalled carbon nanotube without metal catalysts, which is important for nanodevice fabrication. It can be expected that the introduction of Si nanowires into multiwalled carbon nanotubes may significantly alter their electronic and mechanical properties, and may even result in some unexpected material properties. The proposed method possesses great potential for fabricating other semiconductor/CNT nanocomposites.

Synthesis and Mechanism of Ni-Doped Hibonite Blue Pigments (Ni-Doped Hibonite 파란색 안료의 합성과 발색기구)

  • Kim, Gumsun;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.43-47
    • /
    • 2014
  • NiO-doped hibonite pigments were synthesized by the solid state method to get stabilized blue color pigment in both oxidation and reduction atmospheres. Optimum substitution condition with NiO for hibonite blue pigment was investigated. Experimental results were comparable to those of previous cobalt-minimization studies performed with other phosphate- or oxide-based cobalt-containing ceramic pigments (having olivine ($Co_2SiO_4$), spinel ($CoAl_2O_4$), or with co-doped willemite ($(Co,Zn)_2SiO_4$) structures). Composition was designed varying the NiO molar ratio increasing with $SnO_2$. The optimum substitution content is 0.93 mole NiO with 0.75mole $SnO_2$. The characteristics of the synthesized pigment were analyzed by XRD, Raman spectroscopy, SEM, and UV-vis. Synthesized pigment was applied to a lime-barium glaze with 10 wt% each and fired at an oxidation atmosphere of $1250^{\circ}C/1h$ and a reducing atmosphere $1240^{\circ}C/1h$. Blue color was obtained with $L^*a^*b^*$ values at 43.39, -6.78, -18.20 under a reducing atmosphere and 41.66, -6.36, -14.7 under and oxidation atmosphere, respectively.

Growth of Carbon Nanotubes by Microwave Plasma Enhanced Chemical Vapor Deposition (마이크로웨이브 플라즈마 화학기상증착법에 의한 탄소나노튜브의 성장특성)

  • Choi Sung-Hun;Lee Jae-Hyeoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.501-506
    • /
    • 2006
  • Carbon nanotubes (CNTs) were grown with a microwave plasma enhanced chemical vapor deposition (MPECVD) method, which has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the low temperature and the large area growth. MPECVD used methane ($CH_4$) and hydrogen ($H_2$) gas for the growth of CNTs. 10 nm thick Ni catalytic layer were deposited on the Ti coated Si substrate by RF magnetron sputtering method. In this work, the pretreatment was that the Ni catalytic layer in different microwave power (600, 700, and 800 W). After that, CNTs deposited on different pressures (8, 12, 16, and 24 Torr) and grown same microwave power (800 W). SEM (Scanning electron microscopy) images showed Ni catalytic layer diameter and density variations were dependent with their pretreatment conditions. Raman spectroscopy of CNTs shows that $I_D/I_G$ ratios and G-peak positions vary with pretreatment conditions.

Formation of Magnetic Graphene Nanosheets for Rapid Enrichment and Separation of Methyl Orange from Water

  • Zhang, Feng-Jun;Zhang, Zhuo;Xie, Fa-Zhi;Xuan, Han;Xia, Hong-Chen;Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.570-574
    • /
    • 2014
  • Magnetic-graphene nanosheets have been synthesized via a simple effective chemical precipitation method followed by heat treatment. The composite nanosheets are super paramagnetic at room temperature and can be separated by an external magnetic field. The prepared magnetic-graphene nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and BET surface area analysis. The results demonstrated the successful attachment of iron oxide nanoparticles to graphene nanosheets. It was found that the attached nanoparticles were mainly $Fe_3O_4$. The magnetic-graphene nanosheets showed near complete methyl orange removal within 10 mintues and would be practically usable for methyl orange separation from water.

The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method (마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성)

  • 김현호;김흥회;이원종
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

ADHESION STRENGTH OF DIAMOND COATED WC-Co TOOLS USING MICROWAVE PLASMA CVD

  • Kiyama, Nobumichi;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.540-544
    • /
    • 1996
  • To apply the CVD diamond film to coated tools, it is necessary to make adhesion strength between diamond film and substrate stronger. So adhesion strength of diamond coated WC-Co tools using Microwave Plasma CVD and cutting test of Al-18mass%Si alloy using diamond cutting tools were studied. Diamond coating was carried out using Microwave Plasma CVD apparatus. Reaction gas was used mixture of methane and hydrogen. Substrate temperature were varied from 673K to 1173K by control of microwave output power and reaction pressure. By observation of SEM, grain size became larger and larger as substrate temperature became higher and higher. Also all deposits were covered with clear diamond crystals. XRD results, the deposits were identified to cubic diamond. An analysis using Raman spectroscopy, the deposit synthesized at lower substrate temperature (673K) showed higher quality than deposit synthesized at higher substrate temperature (1173K). As a result of scratch adhesion strength test, from 873K to 1173K adhesion strength decreased by rising of substrate temperature. The deposit synthesized at 873K showed best adhesion strength. In the cutting test of Al-18mass%Si alloy using diamond coated tools and the surface machinability of Al-Si works turned with diamond coating tools which synthesized at 873K presented uniform roughness. Cutting performance of Al-18mass%Si alloys using diamond coated WC-Co tools related to the adhesion strength.

  • PDF

NITROGEN DOPED DIAMOND LIKE CARBON FILM SYNTHESIZED BY MICROWAVE PLASMA CVD

  • Urao, Ryoichi;Hayatsu, Osamu;Satoh, Toshihiro;Yokota, Hitoshi
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.549-555
    • /
    • 1996
  • Diamond Like Carbon film is amorphous film which is considered to consist of three coordinate graphite structure and tetrahedron coordinate diamond structure. Its hardness, thermal conductivity and chemical stability are nearly to one of diamond. It is well known to become semi-conductor by doping of inpurity. In this study Diamond Like Carbon film was synthesized by Microwave Plasma CVD in the gas mixture of hydrogen-methan-nitrogen and doped of nitrogen on the single-crystal silicon or silica glass. The temperature of substrate and nitrogen concentration in the gas mixture had an effect on the bonding state, structural properties and conduction mechanism. The surface morphology was observed by Scanning Electron Microscope. The strucure was analyzed by laser Raman spectrometry. The bonding state was evaluated by electron spectroscopy. Diamond Like Carbon film synthesized was amorphous carbon containing the $sp^2$ and $sp^3$ carbon cluster. The number of $sp^2$ bonding increased as nitrogen concentration increased from 0 to 40 vol% in the feed gas at 1233K substrate temperature and at $7.4\times10^3$ Pa. Increase of nitrogen concentration made Diamond Like Carbon to be amorphous and the doze of nitragen could be controlled by nitrogen concentration of feed gas.

  • PDF

Effect of DC Bias on the Deposition of Nanocrystallin Diamond Film over Ti/WC-Co Substrate (Ti/WC-Co 기판위에 나노결정 다이아몬드 박막 증착 시 DC 바이어스 효과)

  • Kim, In-Seop;Na, Bong-Gwon;Gang, Chan-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.117-118
    • /
    • 2011
  • 초경합금 위에 RF Magnetron Sputter를 이용하여 Ti 중간층을 증착 후 MPECVD(Microwave Plasma Enhanced Chemical Vapor Deposition) 시스템을 이용하여 나노결정 다이아몬드 박막을 증착 하였다. 공정압력, 마이크로웨이브 전력, Ar/$CH_4$ 조성비, 기판온도를 일정하게 놓고 직류 bias의 인가 여부를 변수로 하고 증착시간을 0.5, 1, 2시간으로 변화시켜 박막을 제작하였다. 제작된 시편은 FE-SEM과 AFM을 이용하여 다이아몬드 박막의 표면과 다이아몬드 박막의 표면 거칠기 등을 측정하였고, Raman spectroscopy와 XRD를 이용하여 다이아몬드 결정성을 확인하였다. Automatic Scratch �岵謙�ter를 이용하여 복합박막의 층별 접합력을 측정하였다. 바이어스를 인가하지 않고 다이아몬드 박막을 증착할 경우 증착 시간이 증가할수록 다이아몬드 입자의 평균 크기가 증가하며 입자들이 차지하는 면적이 증가하는 것을 확인하였다. 그러나 1시간이 경과해도 아직 완전한 박막은 형성되지 못하고 2시간 이상 증착 시 완전한 박막을 이루는 것이 확인되었다. 이에 비해서 바이어스 전압을 인가할 경우 1시간 내에 완전한 박막을 이루었다. 표면 거칠기는 바이어스를 인가한 경우가 그렇지 않은 경우에 비해서 조금 높은 것으로 나타났다. 이러한 바이어스 효과는 표면에서의 핵생성 밀도 증가와 재핵생성 속도 증가에 기인하는 것으로 해석된다.

  • PDF

Investigation of Synthesis Yield and Diameter Distribution of Single-Walled Carbon Nanotubes Grown at Different Positions in a Horizontal CVD Chamber (수평형 CVD 장치에서 기판 위치에 따른 단일벽 탄소나노튜브의 합성 수율 및 직경 분포 고찰)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.357-363
    • /
    • 2019
  • We investigated a synthesis yield and diameter distribution of single-walled carbon nanotubes (SWNTs) with respect to the growth position in a horizontal chemical vapor deposition (CVD) chamber. Thin films and line-patterned Fe films (0.1 nm thickness) were prepared onto ST-cut quartz substrates as catalyst to compare the growth behavior. The line-patterned samples showed higher growth density and parallel alignment than those of the thin film catalyst samples. In addition, line density of the aligned SWNTs at central region of the chamber was 7.7 tubes/㎛ and increased to 13.9 tubes/㎛ at rear region of the CVD chamber. We expect that the enhanced amount of thermally decomposed feedstock gas may contribute to the growth yield enhancement at the rear region. In addition, the lamina flow in the chamber also contribute to the perfect alignment of the SWNTs based on the value of gas velocity, Reynold number, and Knudsen coefficient we employed.