• Title/Summary/Keyword: raman spectroscopy

Search Result 1,144, Processing Time 0.023 seconds

A study on the crystallization processing of photosensitive glass by FT-IR and FT-Raman spectroscopy (FT-IR과 FT-Raman 분광계를 이용한 광민감유리의 결정화 과정에 관한 연구)

  • 이명원;강원호
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.284-288
    • /
    • 1997
  • FT-IR and FT-Raman spectra were measured for 15Li$_{2}$O.3Al$_{2}$O$_{3}$.78SiO$_{2}$. 4K$_{2}$O glass system after UV irradiations. Optimum UV irradiation time of Li$_{2}$O.SiO$_{2}$ crystalline phase was 60 seconds and crystalline phase of Li$_{2}$O.SiO$_{2}$ was leached out on 5% HF. 977 cm$^{1}$ band of FT-Raman spectra can be attributed to two-non bridging oxygen in unit cell for 1 hour and optimum crystallization was confirmed for 3 hrs, 630.deg. C.

  • PDF

Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa;Smith, Nicholas Isaac
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.530-535
    • /
    • 2008
  • Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

Raman spectroscopy of PLZT thin films prepared by Sol-Gel processing (Sol-Gel법으로 제작된 PLZT박막의 Raman 연구)

  • 방선웅;장낙원;박정흠;마석범;박창엽;최형욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.52-55
    • /
    • 1997
  • In this study, PLZT stock solutions were prepared by sol-gel processing to fabricate PLZT thin films. The stock solutions were spin-coated on ITO-glass and the film were annealed by rapid thermal annealing(RTA). The variation of tile crystallographic structure of the thin films and the phase transition with respect to it were observed using Raman spectra. Raman result showed that the band of spectra are broad as the amount of Zr substitution increased and specially, abrupt change occurs in the raman spectra upon crossing the tetragonal-rhombohedral phase boundry at 2/55/45 PLZT thin film. So, the fact that the crystallographic structure was transitted from tetragonal to rhombohedral structure was certified.

  • PDF

The pH Dependence of Metal Tetrakis (4-sulfonato-phenyl) porphine Structure Probed by Raman Spectroscopy

  • Yoon Minjoong;Chang Jae-Rim;Kim Dongho
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 1988
  • The pH dependence studies of Raman spectra are reported for water-soluble free-base, Zn, Co and Cu tetrakis (4-sulfonatophenyl) porphine in pH 4, pH 7 and pH 13.9 aqueous solution. For free base porphine, the substantial differences are found in absorption and Raman spectra between pH 4 and pH 7 or pH 10 aqueous solutions due to the protonation at low pH. For Zn and Co porphyrins, the hydrolysis equilibrium constants are obtained by spectrophotometric titration experiments. The consistent shifts in Raman frequencies are found at high pH due to the hydrolysis. For Cu porphyrins, instead of hydrolysis the aggregation effect is detected at high pH through the absorption and Raman studies.

Wear Characteristics of Diamond-Like Carbon Thin Film for Durability Enhancement of Ultra-precision Systems (초정밀 시스템의 내구성 향상을 위한 다이아몬드상 탄소 박막의 마멸특성에 관한 연구)

  • 박관우;나종주;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.467-470
    • /
    • 2004
  • Diamond-Like Carbon (DLC) thin film is a semiconductor with high mechanical hardness, low friction coefficient, high chemical inertness, and optical transparency. DLC thin films have widespread applications as protective coatings and solid lubricant coatings in areas such as Hard Disk Drive (HDD) and Micro-Electro-Mechanical-Systems (MEMS). In this work, the wear characteristics of DLC thin films deposited on silicon substrates using a DC-magnetron sputtering system were analyzed. The wear tracks were measured with an Atomic Force Microscope (AFM). To identify the sp2 and sp3 hybridization of carbon bonds and other bonds Raman spectroscopy was used. The structural information of DLC thin films was obtained with Fourier transform infrared spectroscopy and wear tests were conducted by using a micro-pin-on-reciprocator tester. Results showed that the wear characteristics were dependent on the sputtering conditions. The wear rate could be correlated with the bonding state of the DLC thin film.

  • PDF