• Title/Summary/Keyword: raman spectroscopy

Search Result 1,153, Processing Time 0.039 seconds

He II RAMAN SCATTERED LINE BY NEUTRAL HYDROGEN IN THE BIPOLAR PLANETARY NEBULA M2-9 (나비형 행성상 성운 M2-9에서 He II의 중성 수소에 의한 라만 산란선)

  • 이희원;강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2001
  • In the spectrum of the young bipolar planetary nebula M2-9 obtained from the 1.5m telescope at the Cerro Tololo Inter-American Observatory, we detected the He II feature at 6545 $\AA$ that are proposed to be formed via Raman scattering by atomic hydrogen. However, in the same spectrum, the He II emission lines at 6527 $\AA$ and 6560 $\AA$ are absent, which implies that the He II emission region is hidden from our line of sight and that the H I scattering region is pretty much extended not to be obscured entirely. We performed photoionization computations to estimate the physical size of the He II emission line region to be $10^{16}cm$, from which the location and dimension of the obscuring circumstellar region are inferred and the temperature of the central star must exceed $10^5K$. The angular size of the circumstellar region responsible for the obscuration of the He II emission region is ~1" with the assumption of the distance 01 kpc to M2-9, which is consistent with the recent image of M2-9 obtained with the Hubble Space Telescope.

  • PDF

Fabrication and Characterization of Si Quantum Dots in a Superlattice by Si/C Co-Sputtering (실리콘과 탄소 동시 스퍼터링에 의한 실리콘 양자점 초격자 박막 제조 및 특성 분석)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • Silicon quantum dots (Si QDs) in a superlattice for high efficiency tandem solar cells were fabricated by magnetron rf sputtering and their characteristics were investigated. SiC/$Si_{1-x}C_x$ superlattices were deposited by co-sputtering of Si and C targets and annealed at $1000^{\circ}C$ for 20 minutes in a nitrogen atmosphere. The Si QDs in Si-rich layers were verified by transmission electron microscopy (TEM) and X-ray diffraction. The size of the QDs was observed to be 3-6 nm through high resolution TEM. Some crystal Si and -SiC peaks were clearly observed in the grazing incident X-ray diffractogram. Raman spectroscopy in the annealed sample showed a sharp peak at $516\;cm^{-1}$ which is an indication of Si QDs. Based on the Raman shift the size of the QD was estimated to be 4-6 nm. The volume fraction of Si crystals was calculated to be about 33%. The change of the FT-IR absorption spectrum from a Gaussian shape to a Lorentzian shape also confirmed the phase transition from an amorphous phase before annealing to a crystalline phase after annealing. The optical absorption coefficient also decreased, but the optical band gap increased from 1.5 eV to 2.1 eV after annealing. Therefore, it is expected that the optical energy gap of the QDs can be controlled with growth and annealing conditions.

CVD Growth of Grapbene on a Thin Ni Film (Ni 금속 박막위 그라핀 CVD 성장 연구)

  • Choi, In-Sung;Kim, Eun-Ho;Park, Jae-Min;Lee, Han-Sung;Lee, Wan-Kyu;Oh, Se-Man;Cho, Won-Ju;Jung, Jong-Wan;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.425-425
    • /
    • 2009
  • 그라핀을 금속 촉매를 이용하여 상압 혹은 저진공 CVD로 성장할 경우 대형 기판을 쉽게 얻을 수 있으므로 최근 들어 금속 촉매를 이용한 CVD 기술이 재 각광받고 있다. 최근 MIT의 Jing Kong 그룹, Purdue 대학의 Yong P. Chen 그룹, 국내에서는 성균관대학에서 이에 대한 논문을 발표한 바 있다. CVD 방법의 가장 큰 장점은 그라핀 박막의 가장 큰 문제점 중 하나인 대형 기판에 매우 유리하다는 점이다. 본 연구에서는 결함 없는 대형 그라핀기판을 얻기위해 Si/$SiO_2$/Ni 박막위에 그라핀을 LPCVD로 성장하는 실험을 진행하였다. 우선 시료는 Si위에 $SiO_2$를 Sputtering으로 증착하였고, 그 위에 250nm, 300nm두께의 Ni 박막을 e-beam evaporator로 증착하였다. $0.5-1cm^2$ 크기의 샘플을 Thermal CVD 장비를 이용하여 그라핀을 성장하는 실험을 진행하였다. 성장 압력은 95 torr, 성장온도는 $800^{\circ}C$, $850^{\circ}C$, $900^{\circ}C$에서 Hydrocarbon ($C_2H_2$)을 5min, 10min으로 성장시간을 split하였다. Hydrocarbon을 흘리기 전에 Ni grain을 성장하기 위해 성장온도에서 30~60min정도 $H_2$분위기에서 Ni 산화막의 환원 및 어닐링을 진행하였다. 그림.1은 $850^{\circ}C$, 5분간 성장한 그라핀/Ni 샘플의 광학사진이다. 그림.2는 $850^{\circ}C$에서 5min, 10min 성장한 샘플의 Raman spectrum이다. (파장은 514.532nm). 850C 10min 샘플은 G>G' peak 이지만, 5min으로 성장한 샘플의 경우 G'>G peak 임을 알 수 있고, 따라서 5min의 조건에서는 층 두께가 4층 미만의 그라핀 박막을 얻을 수 있음을 보여준다. 또한 G' peak의 위치가 두께가 감소할수록 내려감을 확인할 수 있다. 다만 D peak가 실험한 대부분의 샘플에서 보여서 아직 성장한 그라핀의 결합이 많은 것으로 보인다. 이러한 이유는 성장온도가 낮은 것이 일차 원인으로 생각되며 박막의 균일도 향상과 결함을 줄이기 위한 추가적인 개선 실험을 진행 중이다.

  • PDF

Variation of optical characteristics with the thickness of bulk GaN grown by HVPE (HVPE로 성장시킨 bulk GaN의 두께에 따른 광학적 특성 변화)

  • Lee, Hee Ae;Park, Jae Hwa;Lee, Jung Hun;Lee, Joo Hyung;Park, Cheol Woo;Kang, Hyo Sang;Kang, Suk Hyun;In, Jun Hyeong;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • In this work, we investigated the variation of optical characteristics with the thickness of bulk GaN grown by hydride vapor phase epitaxy(HVPE) to evaluate applicability as GaN substrates in fabrication of high-brightness optical devices and high-power devices. We fabricated 2-inch GaN substrates by using HVPE method of various thickness (0.4, 0.9, 1.5 mm) and characterized the optical property with the variation of defect density and the residual stress using chemical wet etching, Raman spectroscopy and photoluminescence. As a result, we confirmed the correlation of optical properties with GaN crystal thickness and applicability of high performance optical devices via fabrication of homoepitaxial substrate.

Comparison of removal torque of saline-soaking RBM implants and RBM implants in rabbit tibias (토끼의 경골에서 RBM 표면처리 임플란트와 RBM 표면처리 후 Saline에 적신 임플란트의 제거회전력 및 표면분석 비교)

  • Kwon, Jae-Uk;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of the titanium implant soaked in saline after RBM surface treatment on the initial osseointegration by comparing the removal torque and the surface analysis compared to the titanium implant with only RBM surface treatment. Materials and methods: The control group was RBM surface treated implants (RBM), and the test group was implants soaked in saline for 2 weeks after RBM surface treatment (RBM+Sal). The control and test group implants were placed in the left and right tibiae of 10 rabbits, respectively, and at the same time, the insertion torque (ITQ) was measured. After 10 days, the removal torque (RTQ) was measured by exposing the implant site. FE-SEM, EDS, Surface roughness and Raman spectroscopy were performed for the surface analysis of the new implant specimens used in the experiments. Results: There was no significant difference in insertion torque and removal torque between RBM surface treated titanium implants and saline-soaked titanium implants after RBM surface treatment. Conclusion: Saline soaking after RBM surface treatment of titanium implants did not positively affect the initial osseointegration as compared to titanium implants with only RBM surface treatment.

Fabrication of a-Si:H/a-Si:H Tandem Solar Cells on Plastic Substrates (플라스틱 기판 위에 a-Si:H/a-SiGe:H 이중 접합 구조를 갖는 박막 태양전지 제작)

  • Kim, Y.H.;Kim, I.K.;Pyun, S.C.;Ham, C.W.;Kim, S.B.;Park, W.S.;Park, C.K.;Kang, H.D.;You, C.;Kang, S.H.;Kim, S.W.;Won, D.Y.;Choi, Y.;Nam, J.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.104.1-104.1
    • /
    • 2011
  • 가볍고, 유연성(flexibility)을 갖는 박막(thin film)형 플랙서블 태양전지(flexible solar cell)는 상황에 따른 형태의 변형이 가능하여, 휴대가 간편하고, 기존 혹은 신규 구조물의 지붕(rooftop)등에 설치가 용이하여, 차세대 성장 동력 분야에서 각광받고 있다. 그러나 아직까지 플랙서블 태양전지는 제작시 열에 의한 기판의 변형, 기판 이송시 너울 현상, 대면적 패터닝(patterning) 기술 등 많은 어려움 등으로 웨이퍼나 글라스 기판에 제조된 태양전지 대비 낮은 광전환 효율을 갖는다. 따라서 본 연구에서는 플랙서플 태양전지 성능개선을 위해 3.5세대급 ($450{\times}450cm^2$) 스퍼터(sputter), 금속유기 화학기상장치 (MOCVD), 플라즈마 화학기상장치 (PECVD), 레이저 가공장치 (Laser scriber)를 이용하여 a-Si:H/a-SiGe:H 이중접합(tandem)을 갖는 태양전지를 제작하였고, 광 변환효율 특성을 평가하였다. 전도도(conductivity), 라만(Raman)분광 및 UV/Visible 분광 분석을 통하여 박막의 전기적, 구조적, 광학적 물성을 평가하여 단위박막의 물성을 최적화 했다. 또한 제작된 태양전지는 쏠라 시뮬레이터 (Solar Simulator)를 이용하여 성능 평가를 수행하였고, 상/하부층의 전류 정합 (current matching)을 위해 외부양자효율 (external quantum efficiency) 분석을 수행하였다. 제작된 이중접합 접이식 태양전지로 소면적($0.25cm^2$)에서 8.7%, 대면적($360cm^2$ 이상) 8.0% 이상의 효율을 확보하였으며, 성능 개선을 위해 대면적 패턴 기술 향상 및 공정 기술 개선을 수행 중이다.

  • PDF

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures (이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Development of Black Pigment Using Seokganju of Mountain Gyeryong (계룡산 석간주를 사용한 흑색 안료 개발)

  • Lim, Seong-Ho;Kim, Gumsun;Park, Joo-Seok;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • We collected Seokganju minerals (regions in Gyeryong Mountain, Sangsin-ri, Banpo-myeon, Gongju Chungcheongnam-province), which were used as natural color pigments for grayish-blue during the 15th~16th centuries of the Joseon era, and investigated their crystallographic features to develop a black pigment having a spinel structure. By a Raman analysis, the color of Seokganju under transparent glaze as a pigment for painting was black because hematite ($Fe_2O_3$) in Seokganju was converted to magnetite ($Fe_3O_4$) However, Seokganju into the transparent glaze as a pigment was brown because of hematite ($Fe_2O_3$) and small amounts of maghemite (${\gamma}-Fe_2O_3$) in Seokganju minerals. Only Seokganju mineral is used, it is not suitable for black pigment into the transparent glaze. This study tried to develop a spinel crystal black pigment stabilized by Seokganju with CoO, $Cr_2O_3$, NiO, and $MnO_2$ at $1280^{\circ}C$. A Raman spectroscopy analysis was performed to verify the presence of Mn The results showed that it existed as spinel, and two crystal phases $CoFe_2O_4$ and $MnFe_2O_4$ were mixed. $CoFe_2O_4$ spinel has a dark grayish black color and $MnFe_2O_4$ spinel has a greenish black color, and these two appeared as black. The color of a specimen calcined by adding 6 wt% of pigment mixed with 5 wt% of $MnO_2$ added to lime glaze was analyzed with a UV spectrophotometer. When applying the color pigment, it appeared black stabilized with $L^*$24.23, $a^*$ 0.12, $b^*$ -2.29 at $1260^{\circ}C$ oxidative calcination, With $1240^{\circ}C$ reduction firing, it is appeared black stabilized with low brightness of $L^*$ 23.13, $a^*$ -1.12, $b^*$ 0.54.

Hydrothermal Synthesis and Structural Characterization of x mol% Calcia-Stabilized ZrO2 Nanopowders (x mol% 칼시아-안정화 지르코니아 나노분말의 수열합성 및 구조적 특성평가)

  • Ryu, Je-Hyeok;Moon, Jung-In;Park, Yeon-Kyung;Nguyen, Tuan Dung;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.220-226
    • /
    • 2012
  • Pure zirconia and $x$ mol% calcia partially stabilized zirconia ($x$ = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and $x$ mol% calcia doped zirconia was prepared by adding $NH_4OH$ to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as $160^{\circ}C$, pure $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above $160^{\circ}C$. To observe the phase transition, the 3 mol% CaO-$ZrO_2$ and 8 mol% CaO-$ZrO_2$ nanopowders were heat treated from 600 to $1000^{\circ}C$ for 2h. The 3 mol% CaO-$ZrO_2$ heat treated at above $1000^{\circ}C$ was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-$ZrO_2$ nanopowders via the hydrothermal method.