• 제목/요약/키워드: raman

검색결과 2,098건 처리시간 0.031초

Synthesis of Core/Shell Graphene/Semiconductor Nanostructures for Lithium Ion Battery Anodes

  • 신용승;장현식;임재영;임세윤;이종운;이재현;;허근;김태근;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.288-288
    • /
    • 2013
  • Lithium-ion battery (LIB) is one of the most important rechargeable battery and portable energy storage for the electric digital devices. In particular, study about the higher energy capacity and longer cycle life is intensively studied because of applications in mobile electronics and electric vehicles. Generally, the LIB's capacity can be improved by replacing anode materials with high capacitance. The graphite, common anode materials, has a good cyclability but shows limitations of capacity (~374 mAh/g). On the contrary, silicon (Si) and germanium(Ge), which is same group elements, are promising candidate for high-performance LIB electrodes because it has a higher theoretical specific capacity. (Si:4200 mAh/g, Ge:1600 mAh/g) However, it is well known that Si volume change by 400% upon full lithiation (lithium insertion into Si), which result in a mechanical pulverization and poor capacity retention during cycling. Therefore, variety of nanostructure group IV elements, including nanoparticles, nanowires, and hollow nanospheres, can be promising solution about the critical issues associated with the large volume change. However, the fundamental research about correlation between the composition and structure for LIB anode is not studied yet. Herein, we successfully synthesized various structure of nanowire such as Si-Ge, Ge-Carbon and Si-graphene core-shell types and analyzed the properties of LIB. Nanowires (NWs) were grown on stainless steel substrates using Au catalyst via VLS (Vapor Liquid Solid) mechanism. And, core-shell NWs were grown by VS (Vapor-Solid) process on the surface of NWs. In order to characterize it, we used FE-SEM, HR-TEM, and Raman spectroscopy. We measured battery property of various nanostructures for checking the capacity and cyclability by cell-tester.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Optimized Decomposition of Ammonia Borane for Controlled Synthesis of Hexagonal Boron Nitride Using Chemical Vapor Deposition

  • Han, Jaehyu;Kwon, Heemin;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.285-285
    • /
    • 2013
  • Recently, hexagonal boron nitride (h-BN), which is III-V compound of boron and nitride by strong covalent sp2 bonds has gained great interests as a 2 dimensional insulating material since it has honeycomb structure with like graphene with very small lattice mismatch (1.7%). Unlike graphene that is semi-metallic, h-BN has large band gap up to 6 eV while providing outstanding properties such as high thermal conductivity, mechanical strength, and good chemical stability. Because of these excellent properties, hBN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Low pressure and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) methods have been investigated to synthesize h-BN by using ammonia borane as a precursor. Ammonia borane decomposes to polyiminoborane (BHNH), hydrogen, and borazine. The produced borazine gas is a key material that is a used for the synthesis of h-BN, therefore controlling the condition of decomposed products from ammonia borane is very important. In this paper, we optimize the decomposition of ammonia borane by investigating temperature, amount of precursor, and other parameters to fabricate high quality monolayer h-BN. Synthesized h-BN is characterized by Raman spectroscopy and its absorbance is measured with UV spectrophotometer. Topological variations of the samples are analyzed by atomic force microscopy. Scanning electron microscopy and Scanning transmission Electron microscopy are used for imaging and analysis of structures and surface morphologies.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Fabrication of Flexible Graphene Transparent Conducting Film by Self-Assembled Monolayers on Polyethylene Terephthalate

  • 고용훈;정대성;조주미;;차명준;전승한;정우성;박종윤
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.282-282
    • /
    • 2013
  • 그래핀(Graphene)은 열 전도도가 높고 전자 이동도(200 000 cm2V-1s-1)가 우수한 전기적 특성을 가지고 있어 차세대 전자재료로써 유망한 후보로 간주되어 왔다. 최근에는 아크 방출(Arc discharge method), 화학적 기상 증착법(Chemical vapor deposition; CVD), 이온-조사법(Ion-irradiation) 등을 이용한 이종원자(Hetero atom)도핑과 화학적 처리를 이용한 기능화(Functionalization)등의 방법으로 그래핀의 전도도를 향상시킬 수 있었다. 그러나 이러한 방법들은 기판의 표면을 거칠게 하며, 그래핀에 많은 결함들이 발생한다는 단점이 있다. 이러한 단점을 극복하기 위해 자가 조립 단층막법(Self-Assembled Monolayers; SAMs)을 이용하여 기판을 기능화한 후 그 위에 그래핀을 전사하면, 자가 조립 단층막의 기능기에 따라 그래핀의 일함수를 조절 가능하고 운반자 농도나 도핑 유형을 변화시켜 소자의 전기적 특성을 최적화 할 수 있다 [1-3]. 본 연구에서는 PET(polyethylene terephthalate) 기판에 SAMs를 이용하여 유연하고 투명한 그래핀 전극을 제작하였다. 자외선 오존처리 (UV ozone treatment)를 이용하여 PET 기판 표면 위에 하이드록실 기(Hydroxyl group; -OH)를 기능화 화였고 이를 접촉각 측정(Contact angle measurement)을 통해 확인하였다. 또한 3-Aminopropyltriethoxysilane(APTES)와 톨루엔 (toluene)을 이용하여 PET 기판 표면 위의 하이드록실 기 위에 아민 기(Amine group; -NH2)를 기능화 하였고 이를 X-선 광전자 분광법(X-ray photoelectron spectroscopy: XPS)으로 분석하였다. 이렇게 만들어진 PET기판 표면 위에 화학적 기상 증착법을 이용하여 합성한 대면적의 균일한 그래핀을 전사하였다. NH2그룹에 의해 그래핀에 도핑 효과가 나타난 것을 라만 분광법(Raman spectroscopy)과 전류-전압 특성곡선(I-V characteristic curve)을 이용하여 확인하였다. 본 연구 결과는 유연하고 투명한 기판 위에 안정적이면서 패턴이 가능하기 때문에 그래핀을 기반으로 하는 반도체 소자에 적용 가능할 것이라 예상된다.

  • PDF

대기압 플라즈마로 폐 암세포(H460)와 폐 정상세포(L132) 처리시, OH radical density에 따른 Cell 변화 측정

  • 박대훈;김용희;심건보;백구연;엄환섭;최은하
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.184.2-184.2
    • /
    • 2013
  • 대기압 플라즈마와 생체용액과의 상호작용은 Bio-medical 분야에서 주목 받고 있다. 대기압 플라즈마는 전자온도가 고온 플라즈마 보다 상대적으로 낮기 때문에 생체에 적용하기가 적합하다. 따라서 플라즈마가 세포에 미치는 영향을 관측하기 위해서 대기압 플라즈마를 이용하여 생체용액과의 반응을 살펴보고자 한다. Ar gas를 이용하여 플라즈마를 발생시켜 생체용액 표면을 처리하고 OES (Optical Emission Spectroscopy)을 이용해 방출 선을 조사했다. Ar 기체를 이용한 대기압 플라즈마를 사용하여 다른종류의 용액내의 OH Radical Density를 측정하였다. 용액으로는 DI (deionized) water 와 PBS (1x phosphate buffered saline)를 사용하였다. Ar gas를 200 sccm ($cm^3/min$) 으로 흐르게 하였을 때, DI water의 OH Radical Density 는 $4.33{\times}10^{16}cm^{-3}$ 으로 측정되었으며, 자외선 흡수분광법으로 측정한 완충용액인 PBS의 OH Radical Density 측정값은 $1.87{\times}10^{16}cm^{-3}$ 이다. 이런 특성을 기반으로, PBS 용액내의 H460 (Lung Cancer Cell) 와 L132 (Lung Normal Cell)을 깊이와 시간에 따라 대기압 플라즈마로 처리하여 cell의 변화를 보았다. 실험 각각의 조건은 깊이를 2 mm, 4 mm, 6 mm이며 시간은 10 sec, 30 sec, 60 sec 로 설정하였다. 표면으로부터의 깊이가 2 mm, 4 mm, 6 mm 일때 의 OH Radical Density는 각각 $1.87{\times}10^{16}cm^{-3}$, $0.5{\times}10^{16}cm^{-3}$, 0으로써 용액이 깊어질수록 OH Radical Density가 감소함을 볼 수 있다. OH radical density가 높은 2 mm 에서, 처리한 시간이 길어질수록 Cell 은 영향을 많이 받음을 관찰 할 수 있었다. H460 이 L132 보다 플라즈마에 영향을 많이 받음을 확인하였다. 특성변화를 알아보기 위하여 raman spectroscopy, flow cytometry, electron spin resonance로 측정한다.

  • PDF

Synthesis of CdS with Graphene by CBD(Chemical Bath Deposition) Method and Its Photocatalytic Activity

  • Pawar, R.C.;Lee, Jin-Yong;Kim, Eun-Jeong;Kim, Hyungsub;Lee, Caroline Sunyong
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.504-507
    • /
    • 2012
  • Synthesis of RGO (reduced graphene oxide)-CdS composite material was performed through CBD (chemical bath deposition) method in which graphene oxide served as the support and Cadmium Sulfate Hydrate as the starting material. Graphene-based semiconductor photocatalysts have attracted extensive attention due to their usefulness for environmental and energy applications. The band gap (2.4 eV) of CdS corresponds well with the spectrum of sunlight because the crystalline phase, size, morphology, specic surface area and defects, etc., of CdS can affect its photocatalytic activity. The specific surface structure (morphology) of the photocatalyst can be effective for the suppression of recombination between photogenerated electrons and holes. Graphene (GN) has unique properties such as a high value of Young's modulus, large theoretical specific surface area, excellent thermal conductivity, high mobility of charge carriers, and good optical transmittance. These excellent properties make GN an ideal building block in nanocomposites. It can act as an excellent electron-acceptor/transport material. Therefore, the morphology, structural characterization and crystal structure were observed using various analytical tools, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. From this analysis, it is shown that CdS particles were well dispersed uniformly in the RGO sheet. Furthermore, the photocatalytic property of the resulting RGO-CdS composite is also discussed in relation to environmental applications such as the photocatalytic degradation of pollutants. It was found that the prepared RGO-CdS nanocomposites exhibited enhanced photocatalytic activity as compared with that of CdS nanoparticles. Therefore, better efficiency of photodegradation was found for water purification applications using RGO-CdS composite.

실리콘 기판의 산화층이 다중벽 탄소나노튜브 성장에 미치는 영향 (Effect of SiO2 Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes)

  • 김금채;이수경;김상효;황숙현;;전민현
    • 한국재료학회지
    • /
    • 제19권1호
    • /
    • pp.50-53
    • /
    • 2009
  • Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and $SiO_2$/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at $900^{\circ}C$. It was found that the diameter of the MWNTs on the Si substrate sample is approximately $5{\sim}10nm$ larger than that of a $SiO_2$/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.

Pt/LiCoO2/LiPON/Cu와 Pt/LiCoO2/LiPON/LiCoO2/Cu 구조를 갖는 Li-free 박막전지 (Li-free Thin-Film Batteries with Structural Configuration of Pt/LiCoO2/LiPON/Cu and Pt/LiCoO2/LiPON/LiCoO2/Cu)

  • 신민선;김태연;이성만
    • 한국표면공학회지
    • /
    • 제51권4호
    • /
    • pp.243-248
    • /
    • 2018
  • All solid state thin film batteries with two types of cell structure, Pt / $LiCoO_2$ / LiPON / Cu and Pt / $LiCoO_2$ / LiPON / $LiCoO_2$ / Cu, are prepared and their electrochemical performances are investigated to evaluate the effect of $LiCoO_2$ interlayer at the interface of LiPON / Cu. The crystallinity of the deposited $LiCoO_2$ thin films is confirmed by XRD and Raman analysis. The crystalline $LiCoO_2$ cathode thin film is obtained and $LiCoO_2$ as the interlayer appears to be amorphous. The surface morphology of Cu current collector after cycling of the batteries is observed by AFM. The presence of a 10 nm-thick layer of $LiCoO_2$ at the interface of LiPON / Cu enhances the interfacial adhesion and reduces the interfacial resistance. As a result, Li plating / stripping at the interface of LiPON / Cu during charge/discharge reaction takes place more uniformly on Cu current collector, while without the interlayer of $LiCoO_2$ at the interface of LiPON / Cu, the Li plating / stripping is localized on current collector. The thin film batteries with the interlayer of $LiCoO_2$ at the interface of LiPON / Cu exhibits enhanced initial coulombic efficiency, reversible capacity and cycling stability. The thickness of the anode current collector Cu also appears to be crucial for electrochemical performances of all solid state thin film batteries.

KTP 크리스탈을 이용한 PDT용 레이저 시스템 개발 (A Study on a KTP Crystal Laser System for a Cancer Using P.D.T.)

  • 김병문;남효덕;김병철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.631-634
    • /
    • 2004
  • The method that exists in Photodynamic Therapy uses Photosensibility drug strongly Influencing tumour accumulation together with photochemical laser effect and makes the structure of tumour be localized and become extinct. The intracavity transformation of the Nd :YAP main radiation 1079 nm was Raman converted in barium nitrate crystal and the Stokes frequency (1216 nm) was doubled using KTP or RTA crystals. The LiF or Cr:YAG crystals are used for the Q-switch. The radiation Parameters were obtained at 100 Hz pump repetition frequency. The average power at 608 nm radiation with LiF and KTP was 700 mW at multi-mode generation. The 3-6 single 10-15 ns pulses were generated during one cycle of pumping. The doubling efficiency with RTA was two times more than with KTP. The cells of Ehrlich adenocarcinoma (0.1 ml) were i.m. implanted in hind thighs of ICR white non-imbred mice. The cells were preliminarily diluted in medium 199 in the ratio of 1 to 5. HpD was intravenous administered in a dose of 10 mg/kg. The left clean-shaven hind leg was irradiated with laser light 21-27 hours after the administration of the preparation. The right non-Irradiated leg of each animal served as a control. The animals with the transplanted tumor that were not injected with HpD sewed as a control to estimate the complex effect (HpD+ irradiation). Before the administration of HpD and on 3 and 4 days after irradiation the tumor size was measured and the percent of the tumor growth inhibition was calculated. The results of animal treatments has shown high efficiency of PDT method for cancer treatment by means 0.608 m high power pulse solid state laser.

  • PDF