This study aims to assess the influence of rainfall patterns on shallow landslides initiation. Doing so, five typical rainfall patterns with the same cumulative amount and intensity components comprising Advanced (A1 and A2), Centralized (C), and Delayed (D1 and D2) were designed based on a historical rainstorm event in Jinbu. Mt area. Those patterns were incorporated as the hydrological conditions into the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to assess their influences on groundwater pressure and changes in the stability of the slope. The results revealed that not only the cumulative rainfall thresholds necessary to initiate landslides, but also the rate at which the factor of safety decreases and the time required to reach the critical state, are governed by rainfall patterns. The sooner the peak rainfall intensity, the smaller the cumulative rainfall threshold, and the shorter the time until landslide occurrence. Left-skewed patterns were found to have a greater effect on landslide initiation. Specifically, among five rainfalls, pattern (A1) produced the most critical state. The severity of response was followed by patterns A2, C, D1, and D2. Our conclusion is that rainfall patterns have a significant effect on the cumulative rainfall threshold, the build-up of groundwater pressure, and the occurrence of shallow landslides.
Despite the potentially major influence of rainstorm patterns on the prediction of shallow landslides, this relationship has not yet received significant attention. In this study, five typical temporal rainstorm patterns with the same cumulative amount and intensity components comprising Advanced (A1 and A2), Centralized (C), and Delayed (D1 and D2) were designed based on a historical rainstorm event occurred in 2006 in Mt. Jinbu area. The patterns were incorporated as the hydrological conditions into the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS), in order to assess their influences on pore pressure variation and changes in the stability of the covering soil layer in the study area. The results revealed that not only the cumulative rainfall thresholds necessary to initiate landslides, but also the rate at which the factor of safety (FS) decreases and the time required to reach the critical state, are governed by rainstorm pattern. The sooner the peak rainfall intensity occurs, the smaller the cumulative rainfall threshold, and the shorter the time until landslide occurrence. Left-skewed rainfall patterns were found to have a greater effect on landslide initiation. More specifically, among the five different patterns, the Advanced storm pattern (A1) produced the most critical state, as it resulted in the highest pore pressure across the entire area for the shortest duration; the severity of response was then followed by patterns A2, C, D1, and D2. Thus, it can be concluded that rainfall patterns have a significant effect on the cumulative rainfall threshold, the build-up of pore pressure, and the occurrence of shallow landslides, both in space and time.
Journal of the Korean Data and Information Science Society
/
제24권3호
/
pp.603-623
/
2013
최근 들어 예측하기 힘든 기후의 변동성이 심해지고 한국의 산업이 고도화됨에 따라 날씨의 변화에 능동적으로 대처하기 위해 날씨보험이나 날씨 파생상품을 활용할 수 있으나 현재 실제로 이러한 금융상품을 이용하여 날씨위험을 관리하는 데에는 많은 어려움과 한계가 있다. 본 논문에서는 다양한 강수보험의 활성화에 필요한 강수횟수와 강수량의 확률적 모델링을 통하여 여러 가지 강수 보험을 제안하고 추정된 결합분포를 통하여 보험료를 산출하려 한다. 이를 위하여 최근 30년 동안 한국 9개 지역의 7월-9월의 월 강수량과 월 강수 횟수를 확률분포에 적합하고 두 확률변수의 상관성을 코퓰라를 이용하여 분석한다. 그리고 개별분포와 추정된 코퓰라를 이용하여 시뮬레이션을 통하여 여러 가지 강수 보험의 가격을 결정하는 방법을 제안한다.
강한 비선형성의 경향을 보이고 있는 강우-유출간의 관계를 모형화하기 위한 연구는 다양한 방법론으로 적용되어 활발히 연구되고 있다. 그 중에서 인공신경망을 이용하여 강우-유출간의 관계를 모형화하기 위한 대부분의 연구들은 역전파 학습 알고리즘(back propagation algorithm: BPA), Levenberg Marquardt(LV), radial basis function(RBF)을 이용하였으며, 이들은 강한 비선형성을 나타내는 입 출력간의 관계를 나타내는데 탁월한 성능을 보이고 있는 것으로 알려져 있고, 자료들의 급격한 변화나 현저한 변화에 대한 뛰어난 적응성을 보여주고 있다. 이러한 인공신경망 이론은 예측뿐만이 아니라 대상자료들의 양상을 분류하여 그 특성을 분석하는 데에도 이용되고 있다. 따라서 본 연구에서는 강우-유출과정의 양상에 따른 분류와 그에 따른 분석을 위해 Kohonen 네트워크 이론에 의한 자기조직화 방법(self-organizing map; SOM)을 적용하였다. 본 연구에서 제시한 방법을 이용한 결과, 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우양상을 분류 할 수 있었으며, 강우-유출간의 특성을 분석한 결과 강한 비선현성을 가지고 있는 강우-유출관계가 SOM에 의해 7개의 패턴으로 구분되었다.
우리나라는 기후의 계절적 변화가 뚜렷하며 지역별 시간에 따른 강우발생의 특성이 다양하다. 이러한 계절적, 지역적 강우특성의 반영은 수공구조물의 설계 및 안정성 평가 시 매우 중요하다. 이때 설계 강우량의 선정을 위해 적절한 강우 지속시간, 강우량, 그리고 시간에 따른 강우양상을 결정해야 한다. 일반적으로 수공구조물의 설계 및 신뢰도 평가 시 설계강우에 대한 시간적 강우양상의 결정은 매우 중요하다. 본 연구에서는 강우사상을 분리하여 각 강우사상의 무차원화를 실시하였고 이를 4가지 양상으로 구분하여 감천유역의 시간에 따른 강우발생에 영향을 주는 인자를 규명하고자 하였다. 이 분석은 강우관측소의 지리학적 위치, 강우량, 강우 지속시간, 계절, 태풍 및 장마, 건 우기에 관련된 시간에 따른 강우양상의 발생빈도의 상관관계를 통한 분할표에 의한 군집분석을 통해 실시되었다. 본 연구를 통해 해당 지역에 대한 시간에 따른 강우양상 발생의 영향인자를 파악할 수 있으며 이는 결국 수공구조물의 설계 및 평가뿐 만 아니라 유역의 홍수대책수립 시 매우 중요한 사전자료로 활용될 수 있다.
본 연구의 목적은 파키스탄의 강수지역을 구분하는 것이다. 파키스탄 강수 특성의 이해를 증진시키기 위해 강수 지역을 구분하였다. 강수 형태는 순별 강수량 자료를 이용하여 인자분석과 군집분석 기법으로 분석하였다. 연구에 사용된 자료는 파키스탄 기상청에서 제공하는 32개 기상 관측소의 자료로 연구 기간은 1980년에서 2006년까지이다. 인자분석의 결과 추출된 3개의 인자는 전체 변동의 94.60%를 설명한다. 강수 지역은 강수 특성의 공간적 분포를 이해하기 위해 군집분석을 하였다. 군집분석은 Ward법을 이용하여 분석하였다. 연구 결과 강수 지역은 6개의 지역으로 구분되었다. 지역의 경계는 Baluchistan 고원, Indus 평야, Hindu Kush 산맥과 Himalaya 산맥 같은 지형을 기준으로 구분하였다.
Urban flooding occurs in the form of internal-water inundation on roads and lowlands due to heavy rainfall. Unlike in the case of rivers, inundation in urban areas there is lacking in research on predicting and warning through measurement data. In order to analyze urban flood patterns and prevent damage, it is necessary to analyze flooding measurement data for various rainfalls. In this study, the pattern of urban flooding caused by rainfall was analyzed by utilizing the urban flooding measuring sensor, which is being test-run in the flood prone zone for urban flooding management. For analysis, 2019 rainfall data, surface water depth data, and water level data of a street inlet (storm water pipeline) were used. The analysis showed that the amount of rainfall that causes flooding in the target area was identified, and the timing of inundation varies depending on the rainfall pattern. The results of the analysis can be used as verification data for the urban inundation limit rainfall under development. In addition, by using rainfall intensity and rainfall patterns that affect the flooding, it can be used as data for establishing rainfall criteria of urban flooding and predicting that may occur in the future.
사면안정 해석 시, 사면파괴의 주원인인 강우사상의 현실적 접목을 위하여 본 연구에서는 다음 두 가지 방법을 채택하였다. 하나는 시간에 따른 강우량 변화의 영향을 무시한 기존의 설계강우 방식인 I.D.F(Intensity-Duration-Frequency)곡선을 이용하는 방법이며, 다른 하나는 시간의 영향을 고려하여 강우사상을 표현한 Huff 방법이다. 먼저 I.D.F 방법의 강우사상을 적용하여 선행강우효과를 나타내는 초기흡수력의 변화에 따른 사면의 안전율의 변화를 알아보았다. 또한, 두 강우사상의 방식을 적용하여 강우사상이 사면의 안전율 변화에 미치는 영향을 규명하고자 하였다. 그 결과, Huff 방법의 강우사상이 I.D.F 방법보다 더 현실적으로 사면의 안전성 평가가 이루어 질 수 있음을 확인할 수 있었다.
Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
한국수자원학회:학술대회논문집
/
한국수자원학회 2022년도 학술발표회
/
pp.208-208
/
2022
Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.
In this study, a land pollutant load calculation method in TMDLs was improved to consider climate change scenarios. In order to evaluate the new method, future change in rainfall patterns was predicted by using SRES A1B climate change scenarios and then post-processing methods such as change factor (CF) and quantile mapping (QM) were applied to correct the bias between the predicted and the observed rainfall patterns. Also, future land pollutant loads were estimated by using both the bias corrected rainfall patterns and the enhanced method. For the results of bias correction, both methods (CF and QM) predicted the temporal trend of the past rainfall patterns and QM method showed future daily average precipitation in the range of 1.1~7.5 mm and CF showed it in the range of 1.3~6.8 mm from 2014 to 2100. Also, in the result of the estimation of future land pollutant loads using the enhanced method (2020, 2040, 2100), TN loads were in the range of 4316.6~6138.6 kg/day and TP loads were in the range of 457.0~716.5 kg/day. However, each result of TN and TP loads in 2020, 2040, 2100 was the same with the original method. The enhanced method in this study will be useful to predict land pollutant loads under the influence of climate change because it can reflect future change in rainfall patterns. Also, it is expected that the results of this study are used as a base data of TMDLs in case of applying for climate change scenarios.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.