• 제목/요약/키워드: rain event

Search Result 124, Processing Time 0.028 seconds

MONITORING OF BAR TRANSFORMATION IN THE HAN RIVER ESTUARY USING RADARSAT/SAR IMAGES

  • Yang, Chan-Su;Han, Hee-Jeong;Park, Jin-Kyu;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.856-859
    • /
    • 2006
  • In river with bar, the characteristics of its physical conditions have a close relationship with bar morphology. In this paper, a monitoring approach of bar transformation in the Han River Estuary is presented using RADARSAT/SAR Images. The estuary is divided into North and South Korea and its area is blocked by CCL(Civil Control Line). Satellite remote sensing, therefore, is uniquely suited to monitoring bar transformation. Based on SAR signatures for bars, bar transformation is investigated from 2000 to 2005, and monitoring of suspended-silt transportations from terrestrial runoff is tried to understand the morphology during the events of severe rain storm. SAR data did not reveal clearly the bar locations because of most of data acquisitions during high tides from 6.8 m to 9.0 m. Even though the problem, it could be said that in the estuary vegetated area and natural levees are developed well, but bars and shifted after an event like a flood. It is also showed that suspended solids such as silt transported through the estuary could contribute highly to a sedimentation environment around Incheon.

  • PDF

The Effect of Rainfall on the Water Quality of a Small Reservoir (Lake Wangkung, Korea)

  • Hwang, Gil-Son;Kim, Jae-Ok;Kim, Jai-Ku;Kim, Young-Chul;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.39-43
    • /
    • 2005
  • The dynamics of water quality with the storm events were analyzed in a small reservoir for irrigation, Lake Wangkung. Water quality of the inflowing stream fluctuated seasonally with the variation of flow rate. Thermal stratification was consistent from April to October below 2 m depths and anoxic layer was developed below 2 m depth in summer. The unique feature of temperature showed that thermal stratification was disrupted by a heavy rain event during monsoon, but hypolimnetic hypoxia were reestablished after a few days. Phosphorus and nitrogen increased immediately following storm events. The marked increase may be due to the input of P-rich storm runoff from the watershed. Internal phosphorus loading can be one of the explanations for TP increases in summer. When there was a storm, total populations of phytoplankton and zooplankton was reduced immediately following the storm, indicating possible flushing of algae and zooplankton. After a lag period of low-density the plankton population bloomed to a peak again within five days after the storm. Turbid water in lake became clear again which coincided with the time of the phytoplankton buildup. The results demonstrate that water quality is regulated greatly by rainfall intensity in Lake Wangkung.

Preventing disaster system of the subaqueous tunnel under the Han river in the Bundang railway (분당선 한강 하저터널의 방재시스템)

  • Kim Yong-Il;Hwang Nak-Yeon;Yoon Young-Hoon;Jie Hong-Keun;Jang Sung-Wook;Kim Dong-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.308-327
    • /
    • 2004
  • As use of tunnels and subways increase there also are accidents proportionate to it. Daegu Subway Station fire, Hongjimoon tunnel fire led people to be conscious of disaster protection and as a result, there is a trend to adopt standards for fire protection. Accordingly, this thesis is focused on investigating various fire and water protection related issues for subaqueous tunnel under Ran river. The thesis developed evacuation and disaster prevention plan as fire level increases and have identified the suitability of disaster prevention through evacuation and fire simulation, countermeasure of a water leakage during construction and operation considering the subaqueous tunnel. And we selected EPB shield TBM equipment considering the ground condition and effect of boring hole, and accomplished reasonable water protection design through setting goals using event-tree method, as well as examining model test of boring hole and flooding in heavy rain. Also included structured total system consist of water leakage sensing system, water protection gate, pumping system and fire protection system to respond systematically in emergency.

  • PDF

Flammability and Multi-objective Performance of Building Façades: Towards Optimum Design

  • Bonner, Matthew;Rein, Guillermo
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The façade is an important, complex, and costly part of a building, performing multiple objectives of value to the occupants, like protecting from wind, rain, sunlight, heat, cold, and sound. But the frequency of façade fires in large buildings is alarming, and has multiplied by seven times worldwide over the last three decades, to a current rate of 4.8 fires per year. High-performing polymer based materials allow for a significant improvement across several objectives of a facade (e.g., thermal insulation, weight, and construction time) thereby increasing the quality of a building. However, all polymers are flammable to some degree. If this safety problem is to be tackled effectively, then it is essential to understand how different materials, and the façade as a whole, perform in the event of a fire. This paper discusses the drivers for flammability in facades, the interaction of facade materials, and current gaps in knowledge. In doing so, it aims to provide an introduction to the field of façade fires, and to show that because of the drive for thermal efficiency and sustainability, façade systems have become more complex over time, and they have also become more flammable. We discuss the importance of quantifying the flammability of different façade systems, but highlight that it is currently impossible to do so, which hinders research progress. We finish by putting forward an integral framework of design that uses multi-objective optimization to ensure that flammability is minimized while considering other objectives, such as maximizing thermal performance or minimizing weight.

Analyzing effect and importance of input predictors for urban streamflow prediction based on a Bayesian tree-based model

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.134-134
    • /
    • 2022
  • Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.

  • PDF

Evaluation of Major Storm Events Both Measured by Chukwooki and Recorded in Annals of Chosen Dynasty: 1. Qualitative Approach (조선왕조실록 및 측우기 기록에 나타난 주요호우사상의 평가: 1. 정성적 평가)

  • Yoo, Chul-Sang;Kim, Dae-Ha;Kim, Hyeon-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.533-543
    • /
    • 2007
  • This study characterized and qualitatively analyzed the storm events recorded in the Annals of Chosun Dynasty. First of all, the storm events are retrieved using the like Keun-Bi (big rain), Keun-Mul (high water), Hong-Soo (flood), and Pok-Woo (torrential rain). The storm events cited as Keun-Bi do not include any in detail explanation about the storm and damages, but the storm events cited as Keun-Mul, Hong-Soo, and Pok-Woo generally include in detail information. That is, the Keun-Bi was named simply based on the amount of rainfall, but the other three were named considering the runoff with significant damages. Evaluation of effective rainfall derived by the simple SCS method showed that most storm events named Keun-Bi had small antecedent five day rainfall amount to be categorized into AMC-1, but the others mostly into AMC-III. As result, the effective rainfall of Keun-Mul, Hong-Soo, and Pok-Woo were estimated much higher than those of Keun-Bi. Most storm events with lengthy explanation belong to the events with lots of damages, which also includes Keun-Mul, Hong-Soo, and Pok-Woo.

Estimating Rainfall Interception Loss of Decomposed Floor in a Deciduous Forest Using Rainfall Simulation Experiments (인공강우실험에 의한 활엽수 부후낙엽층의 강우차단손실량 추정)

  • Ahn, Byungkyu;Choi, Hyungtae;Lee, Qiwen;Im, Sangjun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.181-187
    • /
    • 2014
  • Forest floor is one of most distinctive features of forest ecosystem, which provides plants and soil microbes with nutrients, and controls hydrologic condition within the floor by intercepting water during a rainfall event and evaporates back into the atmosphere. In this study rainfall interception loss by decomposed forest floor of a deciduous forest has been experimentally estimated using rainfall simulation experiments. Litter-decomposing fungi were incubated on deciduous forest floor samples for the experiment purposes. On a deciduous floor, a $4.22mm{\cdot}kg^{-1}{\cdot}m^2$ of rain was intercepted immediately before rain ceased. Minimum values of interception loss ranged from 1.62 to $2.41mm{\cdot}kg^{-1}{\cdot}m^2$, with an average of $1.87mm{\cdot}kg^{-1}{\cdot}m^2$. Mann-Whitney test showed that decomposing fungi on the forest floor influenced on rainfall interception capacity.

Characteristics of Coastal Water Quality after Diatom Blooms Due to Freshwater Inflow (담수유입에 의한 식물플랑크톤의 대량번식 후의 연안 수질변동 특성)

  • Lee Young-Sik;Park Young-Tae;Kim Kui-Young;Choi Yong-Kyu;Lee Pil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.75-79
    • /
    • 2006
  • In order to study the characteristics of water quality in coastal water and mechanism of phytoplankton blooms, factors of water quality were investigated in diatom bloom area due to rainfall event and no diatom bloom area Diatom blooms occurred after heavy rain and the dominant species were Skeletonema costatum($1,200{\sim}5,000cells/mL$) and Thalassiosira spp.($750{\sim}1,200cells/mL$). In diatom bloom area, water temperature, pH, and dissolved oxygen were observed at higher level than in no diatom bloom area Although these two areas were only 20 meters apart from each other, sharp difference in coastal water quality between two areas was observed. In diatom bloom area, concentrations of nitrogen, phosphorus, and silicate were observed at lower level than in no diatom blooms area. This seems to be due to inflow of much trace metal such as Fe, Mo, Se and so on than nitrogen, phosphorus, and silicate by rainfall events. However, distinct differences in DIN/DIP and $DIN/SiO_2-Si$ between these two areas were not observed.

  • PDF

Effects of Parameters Defining the Characteristics of Raindrops in the Cloud Microphysics Parameterization on the Simulated Summer Precipitation over the Korean Peninsula (구름미세물리 모수화 방안 내 빗방울의 특성을 정의하는 매개변수가 한반도 여름철 강수 모의에 미치는 영향)

  • Ki-Byung Kim;Kwonil Kim;GyuWon Lee;Kyo-Sun Sunny Lim
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.305-317
    • /
    • 2024
  • The study examines the effects of parameters that define the characteristics of raindrops on the simulated precipitation during the summer season over Korea using the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) cloud microphysics scheme. Prescribed parameters, defining the characteristics of hydrometeors in the WDM6 scheme such as aR, bR, and fR in the fall velocity (VR) - diameter (DR) relationship and shape parameter (𝜇R) in the number concentration (NR) - DR relationship, presents different values compared to the observed data from Two-Dimensional Video Disdrometer (2DVD) at Boseong standard meteorological observatory during 2018~2019. Three experiments were designed for the heavy rainfall event on August 8, 2022 using WRF version 4.3. These include the control (CNTL) experiment with original parameters in the WDM6 scheme; the MUR experiment, adopting the 50th percentile observation value for 𝜇R; and the MEDI experiment, which uses the same 𝜇R as MUR, but also includes fitted values for aR, bR, and fR from the 50th percentile of the observed VR - DR relationship. Both sensitivity experiments show improved precipitation simulation compared to the CNTL by reducing the bias and increasing the probability of detection and equitable threat scores. In these experiments, the raindrop mixing ratio increases and its number concentration decreases in the lower atmosphere. The microphysics budget analysis shows that the increase in the rain mixing ratio is due to enhanced source processes such as graupel melting, vapor condensation, and accretion between cloud water and rain. Our study also emphasizes that applying the solely observed 𝜇R produces more positive impact in the precipitation simulation.

Development of Extreme Event Analysis Tool Base on Spatial Information Using Climate Change Scenarios (기후변화 시나리오를 활용한 공간정보 기반 극단적 기후사상 분석 도구(EEAT) 개발)

  • Han, Kuk-Jin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.475-486
    • /
    • 2020
  • Climate change scenarios are the basis of research to cope with climate change, and consist of large-scale spatio-temporal data. From the data point of view, one scenario has a large capacity of about 83 gigabytes or more, and the data format is semi-structured, making it difficult to utilize the data through means such as search, extraction, archiving and analysis. In this study, a tool for analyzing extreme climate events based on spatial information is developed to improve the usability of large-scale, multi-period climate change scenarios. In addition, a pilot analysis is conducted on the time and space in which the heavy rain thresholds that occurred in the past can occur in the future, by applying the developed tool to the RCP8.5 climate change scenario. As a result, the days with a cumulative rainfall of more than 587.6 mm over three days would account for about 76 days in the 2080s, and localized heavy rains would occur. The developed analysis tool was designed to facilitate the entire process from the initial setting through to deriving analysis results on a single platform, and enabled the results of the analysis to be implemented in various formats without using specific commercial software: web document format (HTML), image (PNG), climate change scenario (ESR), statistics (XLS). Therefore, the utilization of this analysis tool is considered to be useful for determining future prospects for climate change or vulnerability assessment, etc., and it is expected to be used to develop an analysis tool for climate change scenarios based on climate change reports to be presented in the future.