• Title/Summary/Keyword: railway track profile

Search Result 35, Processing Time 0.025 seconds

Wheelset Steering Control for Improvement a Running Safety on Curved Track (곡선부 주행안전성 향상을 위한 윤축 조향 제어)

  • Hur, Hyun Moo;Ahn, Da Hoon;Kim, Nam Po;Sim, Kyung Seok;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

Dynamic analysis of high-speed railway train-bridge system after barge collision

  • Xia, Chaoyi;Ma, Qin;Song, Fudong;Wu, Xuan;Xia, He
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • In this paper, a framework is proposed for dynamic analysis of train-bridge systems with a damaged pier after barge collision. In simulating the barge-pier collision, the concrete pier is considered to be nonlinear-inelastic, and the barge-bow is modeled as elastic-plastic. The changes of dynamic properties and deformation of the damaged pier, and the additional unevenness of the track induced by the change of deck profile, are analyzed. The dynamic analysis model for train-bridge coupling system with a damaged pier is established. Based on the framework, an illustrative case study is carried out with a $5{\times}32m$ simply-supported PC box-girder bridge and the ICE3 high-speed train, to investigate the dynamic response of the bridge with a damaged pier after barge collision and its influence on the running safety of high-speed train. The results show that after collision by the barge, the vibration properties of the pier and the deck profile of bridge are changed, forming an additional unevenness of the track, by which the dynamic responses of the bridge and the car-body accelerations of the train are increased, and the running safety of high-speed train is affected.

A Study on Proper Maintenance Level Selection of Track Ballast Structures Using LCC Analysis (LCC분석을 통한 궤도도상구조의 적정 유지관리수준 선정에 관한 연구)

  • An, Kook;Lee, Ho-Yeol;Chu, Jang-Sik;Park, Mi-Yun;Lim, Jong-Kwon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.232-237
    • /
    • 2008
  • Several research institutes including KISTEC and KRRI etc., recently, have studied maintenance activities and performance, in order to determine proper maintenance level and maintenance cost of rail tracks. But it may extremely difficult to make a decision in maintenance matters of concrete track and ballast containing other sub-components. For these reasons, this study investigate variables related to current maintenance, essential maintenance, and preventive maintenance. It is intended to suggest estimation method of proper maintenance cost maximizing rail track performance. It is stated that proposed approach may be very useful to make a decision of proper maintenance level. Typical section of rail track is applied for calculation of life cycle cost according to each maintenance strategy. A proper profile for maintenance is determined minimum life cycle

  • PDF

Quality Assurance of Rail grinding and Optimize grinding Strategy (레일 연마의 품질보증과 최적 연마 전략)

  • Lee Hak-Kyu;Lee Jong-Su;Lee Ki-Seung;Cho Sun-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.283-289
    • /
    • 2004
  • Rail defects(Corrugation, shelling, etc) are occurred by the Rail with wheel contact stress. Rail grinding is maintaining of optimal rail profile to use special rail grinding machine to remove rail defect. The benefits of rail grinding enforcement, improve track safety, improve track steering and rail life, improve ride comfort and reduce noise, etc. Actually when rail grinding plan apply to field track, we should consider a lot of function before determination, such as grinding method, grinding pass number, removing metal volume, etc. because each track has various characteristics. Therefore it is important that the determination of rail grinding strategy for optimum and economic before enforcement.

  • PDF

A Study on the Safety Braking Distance in ATP System (ATP시스템의 안전제동거리에 대한 연구)

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Jong-Soo;Yun, Yu-Boem;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.132-139
    • /
    • 2011
  • ATP(Automatic Train Protection) system in railroad signalling system is on-board signalling system which is controlled by train control information such as location and speed of trains. Safety is ensured by transmitting the train control information between on-board and wayside device in the ATP system. When an engineer disregards the speed limit on a tachometer, the train is automatically stopped by the on-board device. Recently, the studies of increasing speed of the train have been developed. Eurobalise in ERTMS/ETCS system is used in case that speed of trains is up to 500[km/h]. A study of safety braking distance is needed by increasing the speed of train in the ATP system. Train data and track data are required to calculate the safety braking distance. The train data includes formations of trains, length of trains, service brake and emergency brake etc. Also, the track data includes slope of track, curve of track, length of track, speed limit etc. In this paper, the speed profile is computed by analyzing the train and track data in the ATP system. It is demonstrated by applying to subway line 2 in Seoulmetro through the on-site test.

  • PDF

A Wheel Wear Analysis of Railway Vehicle on a Curved Section (곡선 구간에서 철도 차량 휠의 마모 특성 해석)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.547-555
    • /
    • 2016
  • The wheel wear of a railway vehicle is mainly generated when maneuvering on a curved track. The change in the wheel profile affects the dynamic stability of the vehicle. In this analysis, the wheel wear volume was calculated while changing the velocity and radius of the curve to analyze the wear characteristics of a wheel at a curved section. The wear index was calculated from a vehicle dynamic analysis based on a multibody dynamics analysis and wear volume from a wear model by British Rail Research. The wear volume at a radius of 300 m is dominant compared with other radii. The wear volume was calculated by assigning different coefficients of friction to the tread and flange of the wheel to investigate the effect of lubrication on the wear characteristics. The effect of the improvement by lubrication is calculated by varying the radius of the track, and is assessed on an actual urban railway section.

A Parameter Study of Lateral Damper on Hunting Stability of Maglev Vehicle (자기부상열차의 주행안정성 해석에 의한 횡 댐퍼 파라미터 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Kim, Chang-Hyun;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.75-80
    • /
    • 2011
  • In the area of wheel on rail vehicle, hunting stability which is generated by lateral motion is one of important characteristics for running safety. It might cause not only oscillation of vehicle but also derailment in an unstable area of the high speed. A Maglev vehicle is usually controlled the voltage to maintain the air gap between electromagnet and track. However, in Maglev system, an occurrence possibility of hunting motion could be high, because Maglev vehicle is not controlled directly lateral force between electromagnet and track in the curved guideway. In this paper, running safety is evaluated when Maglev vehicle run on guideway at high speed according to installment of damper between maglev vehicles and bogies, and to analyze the effect of it. Also, the parametric study is carried out for selecting effective lateral damper properties through the simulation. To accurately predict the running safety, 3d multibody dynamics models which are included air spring, guideway conditions and irregularities profile are used. With the results acquired, suggestions were made whether to adopt the damper and how to optimize the damping characteristics.

  • PDF

Magnetic Levitation Control through the Introduction of Bogie Pitch Motion into a Control Law (대차 피치운동을 반영한 흡인식 자기부상제어)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Jo, Jeong-Min;Lim, JaeWon;Han, Hyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • The uneven reaction surface profile facing the lift magnets in attractive Maglev vehicles naturally brings about pitch motion of the bogie. In particular, in the placement configuration of the long stator of the linear synchronous motor (LSM) on the track for high-speed propulsion, surface irregularities and the offsets between the stator packs create measurable airgaps, i.e., the clearance between the magnet and the stator, with discontinuously extreme values, resulting in bogie pitch motion. This occurs because the airgap velocities and accelerations derived by the differentiations of the measured air-gaps are used to determine the voltages applied to the magnets. This paper incorporates bogie pitch motion into a control law for each magnet controller to reduce the variations in both the airgap and the pitch angle. The effectiveness of the proposed method is analyzed using a full-scale Maglev vehicle running over a test track.

A geometrical review on the wear of rail and KTX wheel (레일과 차륜의 마모에 대한 기하학적 검토)

  • ;;;;R. Farabet
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.442-449
    • /
    • 2000
  • Before the complete construction of new high-speed line between Seoul and Pusan, KTX is going to operate on both new high-speed line between Seoul and Daegu and electrified conventional lines between Daegu and Pusan. Then, the wheels of KTX are going to operate on various rails such as KS50N and KS60 of conventional line as well as UIC60 of high-speed line. Also, conventional line will have a mixed traffic mode with various types of trains operating on it, such as Saemaul and Mugunghwa. Hence, this study reviews the wear phenomena of wheels and rails in geometrical point of view by comparing their profiles. The analyses of the results show that because UIC60 rail is designed for KTX, KS50N rail whose profile is similar to that of UIC60 will not have any impact on the shape of wheel wear. On the other hand, KS60 rail is expected to have partial wear on both the flange of KTX wheel and the gauge corner of the rail in the initial stages. However, the operation of the trains whose wheels have 1/20 conicity will cause partial sidewear on the inside of the rail and the movement of the contact point between KTX wheel and the rail toward the inside of the track. As a result, the flange wear of KTX wheel will be reduced and the formation of wear-equilibrium profile will be faster.

  • PDF

Measurement of 18GHz Radio Propagation Characteristics in Subway Tunnel for Train-Wayside Multimedia Transmission (지하철 터널에서의 18GHz 무선영상신호 전파특성 측정)

  • Choi, Kyu-Hyoung;Seo, Myung-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.364-369
    • /
    • 2012
  • This paper presents an experimental study on the radio propagation characteristics in subway tunnel at 18GHz frequency band which has been assigned to video transmission between train and wayside. The radio propagation tests are carried out in the subway tunnel of Seoul Metro using the antenna and communication devices of the prototype video transmission system. The measurement results show that 18GHz radio propagation in subway tunnel has smaller path loss than that of general outdoor radio environment. It is also cleared that the arch-type tunnels have smaller radio propagation losses than rectangular tunnels, and single track tunnels have smaller pass loss than double track tunnels. From the measurements, the radio propagation coverage is worked out as 520 meters. The curved tunnels which cannot have LOS communication between transmitter and receiver have large pass losses and fluctuation profile along distance. The radio propagation coverage along curved tunnels is worked out as 300 meters. These investigation results can be used to design the 18GHz radio transmission system for subway tunnel by providing the optimized wayside transmitter locations and handover algorithm customized to the radio propagation characteristics in subway tunnels.