• Title/Summary/Keyword: railway drivers

Search Result 72, Processing Time 0.018 seconds

Development of Train Velocity and Location Tracking Algorithm for a Constant Warning Time System (철도건널목 정시간 제어를 위한 열차속도 및 위치추적방식 개발)

  • Oh, Ju-Taek;Kim, Tae-Kwon;Park, Dong-Joo;Shin, Seong-Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.17-28
    • /
    • 2005
  • About 91.1% of Railway-Highway Crossings (RHC) in Korea use a Constant Distance Warning System(CDWS), while about 8.9% use a Constant Warning Time System(CWTS). The CDWS does not recognize speed differences of approaching trains and provides only waiting times to vehicles and pedestrians based on the highest speed of approaching trains. Under the CDWS, therefore, low speed trains provide unnecessary waiting times at crossings which often generates complains to vehicle drivers and pedestrians and may cause wrong decisions to pass the crossings. The objective of this research is to improve the safety of the RHC by developing accurate a CWTS. In this research a train speed and location detection system was developed with ultra sonic detectors. Locations of the detectors was decided based on the highest speed and the minimum warning time of Saemaul of 160 km/h. To validate the algorithms of the newly developed systems the lab tests were conducted. The results show that the train detection system provides accurate locations of trains and the maximum error between real speeds of trains and those of the system was 0.07m/s.

Analysis on Intersection Traffic Signal Locations Change and Characteristics of Dilemma Zone (교차로 신호기 위치 조정과 딜레마존 특성 분석)

  • Lim, Sam Jin;Lee, Young-Ihn;Kim, Kyung Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.3-13
    • /
    • 2013
  • This paper reviews the characteristics of dilemma zone by analysing the influence exerted by actual location of intersection traffic signal on behaviour of drivers approaching signalized intersection in urban area. The analysis of approach speed was based upon a 'before and after' comparison, measured at three sites where the locations of traffic signals were changed. The study demonstrated that, when traffic signal changed to yellow, the scales of dilemma zone were narrowed in case of stopping cars by moving up the starting point of the dilemma zone due to lowered spot speed. On the other hand, in case of passing cars, the end points of dilemma zone were moved further out to the rear due to increased spot speed. Therefore, changing traffic signal locations could make an impact to increase intersection safety through reducing the scales of dilemma zone. This study also found that, in cases involving vehicles with similar approach speeds, spot speeds could be differentiated following the change of signal locations due to the fact that there can be greater differences in both braking point and deceleration rate. Thus, when considering the appropriate measuring of dilemma zone, 'spot speed' rather than 'approach speed' appeared to be more appropriate criterion.