• Title/Summary/Keyword: railway

Search Result 11,007, Processing Time 0.032 seconds

A Study on the Impermeability of Ground using N.D.S and S.M.I methods (N.D.S공법과 S.M.I공법을 이용한 지반차수 방법에 관한 연구)

  • Kim, Ji-Hwan;Kim, Joon-Jeong;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. The design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, was suggested. Two injection methods namely, Natural Durable Stabilizer (N.D.S) and Space-Multi Injection Grouting (S.M.I) methods, were introduced as new approach methods which could be adapted to modify the riverbed ground. In order to evaluate the performance of the improved ground by the N.D.S and S.M.I method, a series of pilot tests including the field and laboratory permeability tests, were carried out in the river crossing tunnel construction sites. The results obtained from pilot test program, were also reviewed. The results, the grouting efficiency of the S.M.I method using the non-alkalimeter silica sol is better than that of N.D.S method using cement. In addition, it is anticipated that the current research results are contributed to develop the grouting design technology.

A Study on the Reinforcement of Bridge Foundation in the Limestone Cavity (석회암 공동지역의 교량기초 보강에 관한 연구)

  • Lee, Sang-Chul;Ryu, Chang-Yeol;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Irregular distributions of limestone cavity in Gang-Won province area may cause unexpected accidents from reduced serviceability or failure of structure. It is requested that an appropriate ground reinforcement method should be used to improve bearing capacity of structure, and the method should also be satisfied with environmental requirements. Among several methods used for foundation constructions in cavity area, Rod Jet Pile(RJP) method has been widely used. While the RJP method was used to improve bearing capacity for the railway bridge foundations, water pollutions of drinking water as well as fishery located adjacent to this project area were occurred. The main reason of the water pollution was cement runoff used in cement mortar during injecting material in RJP method. Laboratory tests were performed to prevent water pollution. The compaction mortar method using low movable material was selected for this project. The quality of water at a fishery adjacent to the site and the compressive strength of cores taken from the construction site were measured. Test results show that the water pollutions was minimized, and the average compressive strength of foundation material was over 5 MPa. As a result of this study, compaction mortar method can be used to ensure the bearing capacity of foundation and to prevent environment pollutions.

Seismic Fragility Evaluation of Inverted T-type Wall with a Backfill Slope Considering Site Conditions (사면 경사도가 있는 뒷채움토와 지반특성을 고려한 역T형 옹벽의 지진시 취약도 평가)

  • Seo, Hwanwoo;Kim, Byungmin;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.533-541
    • /
    • 2021
  • Retaining walls have been used to prevent slope failure through resistance of earth pressure in railway, road, nuclear power plant, dam, and river infrastructure. To calculate dynamic earth pressure and determine the characteristics for seismic behavior, many researchers have analyzed the nonlinear response of ground and structure based on various numerical analyses (FLAC, PLAXIS, ABAQUS etc). In addition, seismic fragility evaluation is performed to ensure safety against earthquakes for structures. In this study, we used the FLAC2D program to understand the seismic response of the inverted T-type wall with a backfill slope, and evaluated seismic fragility based on relative horizontal displacements of the wall. Nonlinear site response analysis was performed for each site (S2 and S4) using the seven ground motions to calculate various seismic loadings reflecting site characteristics. The numerical model was validated based on other numerical models, experiment results, and generalized formula for dynamic active earth pressure. We also determined the damage state and damage index based on the height of retaining wall, and developed the seismic fragility curves. The damage probabilities of the retaining wall for the S4 site were computed to be larger than those for the S2 site.

The Distribution of Indoor Air Pollutants by the Categories of Public-Use Facilities and Their Rate of Guideline Violation (다중이용시설별 실내공기 오염물질 농도분포 및 기준치 이상 값의 구성비 조사)

  • Joen, Jeong-In;Lee, Hye-Won;Choi, Hyun-Jin;Jeon, Hyung-Jin;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.398-409
    • /
    • 2021
  • Background: The types and effects of hazardous pollutants in indoor air may vary depending on the characteristics of the sources and pollutants caused by physical and chemical properties of buildings, the influence of outdoor air, and the exposure and use characteristics of residents. Objectives: This study was conducted to provide basic data on the establish of indoor air quality management for different classes of public-use facilities by presenting the characteristics of concentration distribution of hazardous pollutants by different public-use facilities and the status of the excess proportion of exceeding standards. Methods: This study analyzed self-measurement data from public-use facilities taken from 2017 to 2019 A total of 133,525 facilities were surveyed. A total of 10 types of pollutants that have maintenance and recommended standards stipulated in the Indoor Air Quality Control Act from the Ministry of Environment were investigated. The excess proportion and the substances exceeding the criteria for each type of public-use facilities for these pollutants were investigated. Results: As a result of the analysis of the proportion of exceeding the standard for each type of public-use facility, the facilities with the highest excess proportion of the standards for each hazardous pollutant were: PM10 in railway stations (8.93%), PM2.5 in daycare centers (7.36%), CO2 in bus terminals (2.37%), HCHO in postpartum care centers (4.11%), total airborne bacteria in daycare centers (0.69%), CO in museums (0.1%), NO2 in postpartum care centers (1.15%), Rn in museums (0.78%), total volatile organic compounds in postpartum care centers (7.20%) and mold in daycare centers (1.44%). Conclusions: Although uncertainty may arise because this study is a result of self-measurement, it is considered that this study has significance for providing basic data on the establishment in the future of indoor air quality management measures customized for each type of public-use facility.

Impact of Large-scale Transportation Infrastructure Plan on the Housing Markets -Focus on GTX, Housing Consumer Confidence Index and Sales Prices- (광역교통시설 건설계획이 주택시장에 미치는 영향 -수도권 광역급행철도, 주택소비심리지수 및 실거래가 분석을 중심으로-)

  • Choi, Ui-Jin;Kim, Jung-Hwa
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.9-18
    • /
    • 2021
  • Constructing the Metropolitan Railway Express (the GTX) may have an impact on consumer confidence and housing sales price located near the planned route. This study looked at how consumers' psychology and housing prices change as the large-scale transport infrastructure plane was planned. Also, it looked at the relationship between consumer sentiment and housing prices to analyze the impact of new transportation facilities inflows. Using a correlation analysis, the relationship between the consumer sentiment index and the actual transaction price of apartments was identified. The impact of GTX on the consumer sentiment index and the actual transaction price of apartments was looked at using the Difference-in-Differences methodology. Our finding shows that the construction plan of a large-scale transportation infrastructure in the metropolitan area affects the sentiment of housing consumption and actual transactions. In a situation where the government is speeding up the construction of a wide-area transportation network such as GTX with the goal of becoming a city where people can commute to downtown Seoul within 30 minutes, policies that can stabilize the housing market in transportation hubs should be suggested.

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading (열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토)

  • Yi, Na-Hyun;Kim, Ji-Hwan;Kang, Yun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.604-613
    • /
    • 2018
  • In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.

Prediction of Optimal Catenary Tension by Dynamic Characteristic Measurement and Dynamic Analysis of Pantograph in High-Speed Train (고속열차 팬터그래프 동특성 측정 및 동역학 해석을 통한 최적 전차선 장력 예측)

  • Oh, Hyuck Keun;Yoo, Geun-Jun;Park, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.350-356
    • /
    • 2018
  • The contact force, which is the dynamic interaction between the pantograph and the catenary, is an important indicator for evaluating the current collecting quality, which is a stable power supply characteristic to the vehicle. In this study, dynamic contact force characteristics of pantograph of HEMU-430X vehicle, which is a power-distributed high-speed train test vehicle, were analyzed according to the catenary tension and compared with the analytical results using the pantograph-catenary interaction model. As a result of comparing the test results with the analytical results, it was confirmed that the average contact force and the standard deviation of the contact force, which are the main dynamic contact force characteristics, coincide relatively well. Using the analytical model, the relationship between the catenary tension and the contact force is presented according to the vehicle speed, and the optimal catenary tension for each operation speed is presented and compared with the international standard. As a result, it was found that the results obtained from the analysis are comparable to those recommended by international standards.

A Case Study on the Construction at Near Verge Section of Secure Objects Using Electronic Detonators (전자뇌관을 이용한 보안물건 초근접구간 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hee;Lim, Il-soo;Kim, Jin-soo
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.22-30
    • /
    • 2019
  • On sites where explosives are used, the effects of noise and vibration produced by the blast wave are subject to a number of operational restrictions. Recently, the number of civil complaints has increased and the standard of environmental regulations on secure goods has been greatly tighten. Therefore, work is generally carried out by machine excavation in case of close proximity of safety thing. Machine excavation methods have the advantage as reducing noise and vibration compared to blasting methods, but depending on the conditions of rock intended to be excavated, they are sometimes less constructive than planned. In general, the closer a rock type is to hard rock, the less constructible it becomes. In this paper, we are going to explain the construction of a construction section with a close proximity to a safety thing using electronic detonators. While the project site was designed with a machine excavation methods due to the close(9.9m) proximity of safety thing(the railroad), construction using electronic detonators was reviewed as an alternative method for improving rate of advance time and construction efficiency when expose to hard rock. Through blasting using electronic detonators, construction and economic efficiency were maximized while minimizing impact on surrounding safety things. Because $HiTRONIC^{TM}$, which is produced by Hanwha, has innovative stability and high explosion reliability, it is able to explode with high-precision accuracy. Electronic detonators are widely used in construction sites of railway or highway, other urban burrowing areas and large limestone mines.

The Characteristics of South Korea's New Northern Policy and Cooperation with Eurasia Countries' Initiatives Focused on China, Mongolia and Russia (한국 신(新)북방정책과 유라시아 주요 국가와의 협력방안 모색 - 중국, 몽골, 러시아를 중심으로 -)

  • Song, Min-Geun
    • Journal of Digital Convergence
    • /
    • v.17 no.7
    • /
    • pp.1-13
    • /
    • 2019
  • The purpose of this study is to examine the main features of South Korea's New Northern Policy and to make some suggestions for cooperation with neighboring countries' initiatives. The New Northern Policy encompasses the whole of Eurasia, but the starting development area would be the border region of the Korean Peninsula. In this viewpoint, this study examines the Belt and Road Initiative of China, the New Eastern Policy of Russia and the Steppe Road Initiative of Mongolia, and presents the characteristics, problems and some implementation strategies of the New Northern Policy. Apart from the future possibilities of the regional cooperations that include North Korea, it would be necessary for South Korea to secure and expand the possible opportunities for "Korea-China-Mongolia-Russia" cooperation. In order to create a close cooperative environment with North Korea in the future, it would also be necessary to build a maritime route, with port development around major border regions on the Korean Peninsula, including Russia, and to develop the port-railway intermodal transportation system with neighboring countries. South Korea need to actively cooperate with neighboring countries to develop the new Eurasia logistics routes would be more favorable to the Korean Peninsula in preparation for the time when the North Korean nuclear issue will be resolved.