• Title/Summary/Keyword: rail support modulus

Search Result 5, Processing Time 0.027 seconds

A comparison between the dynamic and static stiffness of ballasted track: A field study

  • Mosayeb, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.757-769
    • /
    • 2016
  • Rail support modulus is an important parameter for analysis and design of ballasted railway tracks. One of the challenges in track stiffness assessment is its dynamic nature under the moving trains which differs it from the case of standing trains. So the present study is allocated to establish a relation between the dynamic and static stiffness of ballasted tracks via field measurements. In this regard, two different sites of ballasted tracks with wooden and concrete sleepers were selected and the static and dynamic stiffness were measured based on Talbot - Wasiutynski method. In this matter, the selected tracks were loaded by two heavy and light car bodies for standing and moving conditions and consequently the deflection basins were evaluated in both sites. Knowing the deflection basins respect to light and heavy loading conditions, both of static and dynamic stiffness values were extracted. Finally two definite relations were obtained for ballasted tracks with wooded and concrete sleepers.

Experimental Verification of Design Parameters of Track (실측을 통한 궤도설계 파라메타의 검증)

  • Lee Jee-Ha;Hwang Sung-Ho;Na Sung-Hoon;Kim Jung-Hwan;Suh Sa-Bum
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1065-1070
    • /
    • 2004
  • When the track designer analyze the track structure uses many known & unknown parameters. Unknown parameters, equivalent rail support spring factor, unit rail support spring factor, track damping coefficient, should be assumed. Known parameters are section properties (area, section factor, etc), material properties(modulus of elasticity, mass, etc) and track conditions(wheel load, loading conditions, gauge, etc.). In the assumption of track design parameters, some parameters can be overestimated or under estimated. The purpose of this study is to verify design parameters used in track design, in the way of experimental measurements. Data of displacements, banding stresses, loads, accelerations are measurable at track site. From these data, unknown parameters are derived. Compare these assumed and derived parameters, estimate the entire track stability.

  • PDF

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Free vibrations of precast modular steel-concrete composite railway track slabs

  • Kimani, Stephen Kimindiri;Kaewunruen, Sakdirat
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.113-128
    • /
    • 2017
  • This paper highlights a study undertaken on the free vibration of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an evolvement from the slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both eigenfrequencies and eigenmodes have been extracted using the Lanczos method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

Damped frequencies of precast modular steel-concrete composite railway track slabs

  • Kaewunruen, Sakdirat;Kimani, Stephen Kimindiri
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.427-442
    • /
    • 2017
  • This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.