• 제목/요약/키워드: rail material

검색결과 211건 처리시간 0.024초

탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구 (A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis)

  • 안성찬;이상돈;손정호;조용주
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구 (Study on Critical Impact Point for a SB2 Class Flexible Barrier)

  • 허연희;김용국;고만기;김기동
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

Estimation for Primary Tunnel Lining Loads

  • 김학준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1998년도 터널.암반역학위원회 박사학위 논문집
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구 (Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • 제14권4호
    • /
    • pp.196-203
    • /
    • 1982
  • 본 논문에서는 고리 1호기의 기사용 핵연료 집합체를 수송하기 위한 Cask를 설계하였다. 이를 위하여 고리 1호기의 기사용 핵연료 집합체로부터 방출되는 감마선과 중성자를 계산하여 MORSE 및 ANISN전산 코드로써 차폐 계산을 수행하였다. 그 결과, 9개의 집합체를 동시에 수송할 수 있는 Steel Cask가 가장 적합하다는 것을 밝혔다. 이 Steel Cask에 대한 안전성을 평가하기 위하여 연료봉의 중심 온도와 복재온도를 계산하여 핵연료의 용융점보다 훨씬 낮음을 증명하였다. 또한 KENO와 MORSE전산 코드를 사용하여 임계도 계산을 수행하여 미임계 상태임을 증명하였다. 이로써 9개의 기사용 핵연료 집합체를 동시에 수송할 수 있는 Steel Cask를 간단히 설계하였다.

  • PDF

$DEVSim ++^ⓒ$을 이용한 AS/RS의 Modeling 및 Simulation

  • 김용재;황문호;김탁곤;최병규
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1994년도 추계학술발표회 및 정기총회
    • /
    • pp.7-8
    • /
    • 1994
  • 최근 들어 원자재, 재공품 또는 완제품을 신속하고 정확하게 공급/배분하기 위해 저장과 인출을 담당하는 Material Handling System을 이용하여 작업자의 개입요소를 줄이며, 제고관리 Computer를 이용하여 입고/출고 명령을 유효적절하게 처리하는 ASRS(Atomated Storage and Retreival System : 자동창고 시스템)가 널리 공급되고 있다. 중앙은행의 현금창고, 병원의 약품창고, 식품/화장품 회사의 배송창고, 군수물자의 군납창고에 이르기까지 물품의 저장 또는 공급의 필용성을 갖는 곳에서는 어디든지 찾아볼 수 있는 ASRS는 가깝게는 관공소나 대형빌딩의 주차장에도 이의 개념이 도입되어 사용됨을 볼 수 있다. 최근의 인금인상, 구인난등의 이유로 ASRS설치는 계속 증가할 추세에 있으나 자동 창고 시스템을 설치하기 위해서는 막대한 초기 투자가 필요하며 시스템의 설계 및 설치후 운영에 대한 연구가 반드시 필요하다. ASRS의 운영 Rule 검증, 수행능력 분석등의 목적을 갖는 연구에는 여러 접근방법이 있을 수 있으나 구성 설비와 운영 Rule의 복잡한 관계로 컴퓨터 시뮬레이션의 거의 유일한 문제해결 방법이다. ASRS의 Modeling에 관한 기존의 연구로는 수리모델 수립. 이산사건 시스템의 관점에서 event-graphy, petri-net을 이용한 modeling이 있으며 ASRS에 대한 전용 Simulator 개발등이 진행되었다. 본 연구의 대상 시스템은 2개의 Rack과 하나의 Stacker Crane 으로 구성된 Aisle과 입출고의 물류를 처리하는 순환 RGVS(Rail Guided Vehicle System), 입/출고장을 구성하는 Conveyor Net등으로 이루어진 제조-물류시스템의 일반적인 ASRS이다. 또 이 ASRS의 입/출고 방식은 전수 입/출고만을 포함하며 Blocking 방지를 위한 Capaicty 예약, 다중설비 선택등의 문제등을 고려하고 있다. 본 연구의 접근방법으로는 ASRS의 개념적인 Reference Model을 수립하고 이 Reference Model에 대한 Formal Model로 DEVS(Discrete Event System Specification)을 이용하여 시스템을 Modeling하였다. 이의 Computer Simulation을 위하여 DEVS형식론 환경에서의 Simulation Language인 DEVSim ++ⓒ를 이용하여 시스템을 구현하였다.

  • PDF

고속철도에서의 소성침하를 고려한 강화노반 설계기법 개발 (Development of Design Method for Reinforced Roadbed Considering Plastic Settlement for High-speed Railway)

  • 최찬용;최원일;한상재;정재현
    • 한국지반공학회논문집
    • /
    • 제29권9호
    • /
    • pp.55-69
    • /
    • 2013
  • 본 설계법은 기존 탄성이론에 근거한 강화노반 설계방법의 대안으로 노반의 소성침하와 열차 반복하중에 따른 응력-변형 특성을 고려한 노반 설계 방법이다. 특징은 설계자가 요구하는 허용설계기준에 따라 교통하중과 열차 년간 통과톤수에 따라 노반의 탄성변위 뿐만 아니라 소성침하량을 평가할 수 있다. 본 설계법을 이용하여 허용 탄성 및 소성 침하량, 열차 속도 및 총통과톤수등의 설계조건을 고려하여 호남고속철도 표준노반단면에 적용하였다. 그 결과 노반의 회복탄성계수 모델인자($A_E$), 일축압축강도, 흙 재료 종류 등의 요구수준 등을 평가할 수 있다.

차량용 와이퍼 블레이드의 접촉압력 해석모델 개발 (Development of Contact Pressure Analysis Model of Automobile Wiper Blades)

  • 이상진;노유정;김경남;김근우;장영근;김관희;이재천
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.292-298
    • /
    • 2015
  • A wiper is a safety device removing rain and debris from windshield and ensuring visibility of drivers. If contact pressure distribution between rubber of the blade and the windshield is unbalanced, unwanted noise, vibration, and abrasion of the blade can occur and sometimes fatal accidents could occur. To improve the safety of the wiper, there have been many researches on the contact pressure analysis of the wiper, but the analysis results were not converged or require much computational time due to material nonlinearity of the rubber and contact conditions between the blade rubber and the windshield. In this research, a simple model with 1D beam and 2D shell elements was used for the contact pressure analysis instead of the 3D blade model. The simplified model saved computational time of the analysis and resolved convergence problems. The accuracy of the analysis results was verified by comparing them with experimental results for different rail spring curvatures.

실시간 공정데이터 기반의 스마트 롤포밍에 관한 연구 (Smart Roll Forming Based on Real-Time Process Data)

  • 손재환;조동현;김철홍
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.45-51
    • /
    • 2018
  • Roll forming refers to the production of long plate-molded products, such as panels, pipes, tubes, channels, and frames, by continuously causing the bending deformation to thin plates using rotating rolls. As the roll forming method has advantages in terms of mass production because of its excellent productivity, the size of the roll forming industry has been continuously increasing and the roll forming method is increasingly being used in diverse industrial fields as a very important processing method. Furthermore, as the roll forming method mainly depends on the continuous bending deformation of the plate materials, the time and the cost of the heterogeneous materials developed in the process are relatively large when considered from the viewpoint of plastic working because many processes are continuously implemented. The existing studies on roll forming manufacturing have reported the loss of large amounts of time and materials when the raw materials or product types were changed; further, they have stated that the use of this method can hardly guarantee the uniformity of the formed shapes and the consistency in terms of size and cannot detect all the defects occurring during the mass production and related to the dimensions. Therefore, in this research, a real-time process data-based smart roll forming method that can be applied to multiple products was studied. As a result, a roll forming system was implemented that remembers and automatically sets the changes in the finely adjusted values of the supplied quantities of individual heterogeneous materials so that the equipment setting changing time for heterogeneous material replacements or changes in the products being produced can be shortened. It also secures the uniformity of the products so that more competitive and precise slide-rail products can be mass-produced with improvements in the quality, price, and productivity of the products.

시뮬레이션 기법을 이용한 항공기 부품 가공 유연생산시스템의 팔레트 수량 결정 (Determination of the Pallet Quantity Using Simulation in the FMS for Aircraft Parts)

  • 김덕현;이인수;차춘남
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.59-69
    • /
    • 2018
  • This study deals with the case study on the pallet quantity determination problem for the flexible manufacturing system producing 32 different types of aircraft wing ribs which are major structures of an aircraft wings. A Korean company has constructed the WFMS (wing rib flexible manufacturing system) that is composed of several automated equipments such as the 5-axis machining centers, the RGV (rail guided vehicles)s, the AS/RS (automated storage and retrieval system), the loading/unloading stations, and so on. Pallets play a critical role in the WFMS to maintain high system utilization and continuous work flow between 5-axis machining machines and automated material handling devices. The discrete event simulation method is used to evaluate the performance of the WFMS under various pallet mix alternatives for wing rib manufacturing processes. Four performance measures including system utilization, throughput, lead-time and work in process inventory level are investigated to determine the best pallet mix alternative. The best pallet mix identified by the simulation study is adopted in setting up and operating a real Korean aircraft parts manufacturing shop. By comparing the real WFMS's performances with those of the simulation study, we discussed the cause of performance difference observed and the necessity of developing the CPS (cyber physical system).

윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성 (The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics)

  • 홍석준;이광희;임현우;김재웅;이철희
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.