• Title/Summary/Keyword: rafter pipe

Search Result 14, Processing Time 0.019 seconds

Evaluation on the Behavioral Characteristics of Plastic Greenhouse by Full-scale Testing and Finite Element Analysis (재하시험과 유한요소해석에 의한 플라스틱 필름 온실의 거동특성 분석)

  • Ryu, Hee Ryong;Lee, Eung Ho;Cho, Myeong Whan;Yu, In Ho;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.459-465
    • /
    • 2012
  • This study analyzed the effect of semi-rigid rafter-purlin cross-linking connection and driven steel pipe base on the static behavior of plastic greenhouse (PG). To promote the time and cost efficiency of the assembly process, each cross-linking connections of space arch type grid that consists of rafter and purlin is linked with steel-wire buckles, and each end of the rafters was driven directly to the ground to support the PG structure. However, in the design process, cross-linking connections and bases are idealized by being categorized as fully rigid or frictionless pinned, which does not appropriately reflect actual conditions. This study takes a full-scale loading test of PG and analyzes the effect of member cross-linking connections and driven steel pipe base on the behavior of a structure. The analysis provided a basis for determining the rigidity factor of member cross-linking nodes needed for finite element analysis, and the reliability of the result regarding the static behavior of PG.

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.

Development of Rain Shelter for Chinese Cabbage Rainproof Cultivation (배추재배용 비가림하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.293-302
    • /
    • 2014
  • This study was carried out to develop rain shelter which can make an appropriate size and environment for Chinese cabbage rainproof cultivation. Fifty three farms with chinese cabbage rainproof cultivation system have been investigated to set up width and height of rain shelter. Mostly the width of 6m was desired for rain shelter and the height of 1.6m for their eaves, so these values were chosen as the dimensions for rain shelter. After an analysis of their structural safety and installation costs by the specifications of the rafter pipe, Ø$25.4{\times}1.5t$ and 90cm have been set as the size of rafter that such size costs the least. This size is stable with $27m{\cdot}s^{-1}$ of wind velocity and 17cm of snow depth. Therefore it is difficult to apply this dimension to area with higher climate load. In order to sort out such problem, the rain shelter has been designed to avoid damage on frame by opening plastic film to the ridge. Once greenhouse band is loosen by turning the manual switch at the both sides of rain shelter and open button of controller is pushed then switch motor rises up along the guide pipe and plastic film is opened to the ridge. Chinese cabbage can be damaged by insects if rain shelter is opened completely as revealed a field. To prevent this, farmers can install an insect-proof net. Further, the greenhouse can be damaged by typhoon while growing Chinese cabbage therefore the effect of an insect-proof net on structural safety has been analyzed. And then structural safety has been analyzed through using flow-structure interaction method at the wind condition of $40m{\cdot}s^{-1}$. And it assumed that wind applied perpendicular to side of the rain shelter which was covered by insect-proof net. The results indicated that plastic film was directly affected by wind therefore high pressure occurred on the surface. But wind load on insect-proof net was smaller than on plastic film and pressure distribution was also uniform. The results of structural analysis by applying pressure data extracted from flow analysis indicated that the maximum stress occurred at the end of pipe which is the ground part and the value has been 54.6MPa. The allowable stress of pipe in the standard of structural safety must be 215 MPa or more therefore structural safety of this rain shelter is satisfied.

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.