• Title/Summary/Keyword: raft inclination

Search Result 3, Processing Time 0.016 seconds

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

Effects of rock-support and inclined-layer conditions on load carrying behavior of piled rafts

  • Roh, Yanghoon;Kim, Garam;Kim, Incheol;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, the load carrying behavior of piled rafts installed in inclined bearing rock layer was investigated for rock-mounted and -socketed conditions. It was found that settlements induced for an inclined bearing rock layer are larger than for a horizontal layer condition. The load capacity of piled rafts for the rock-mounted condition decreased as rock-layer inclination angle (${\theta}$) increased, while vice versa for the rock-socketed condition. The load capacities of raft and piles both decreased with increasing ${\theta}$ for the rock-mounted condition. When bearing rock layer was inclined, loads carried by uphill-side piles were greater than those by downhill-side piles. The values of differential settlements of rock-mounted and -socketed conditions were not significantly different whereas slightly higher for the rock-socketed condition. The values of load sharing ratio (${\alpha}_p$) and its variation with settlement were not markedly changed by the inclination of bedrock. It was shown that ${\alpha}_p$ for piled rafts installed in rock layer was not affected by ${\theta}$ whereas actual loads carried by raft and piles may vary depending on the pile installation and rock-layer inclination conditions.

Driving Burj Dubai Core Walls with an Advanced Data Fusion System.

  • Cranenbroeck, Joel Van;Hayes, Douglas McL;Sparks, Ian R
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.465-469
    • /
    • 2006
  • In recent years there has been considerable interest in the construction of super high-rise buildings. From the prior art, various procedures and devices for surveys during and after the phase of erection of a high-rise building are known. High-rise buildings are subject to strong external tilt effects caused, for instance, by wind pressures, unilateral thermal effects by exposure to sunlight, and unilateral loads. Such effects are a particular challenge in the phase of construction of a high-rise building, in as much as the high-rise building under construction is also subject to tilt effects, and will at least temporarily lose its - as a rule exactly vertical - alignment. Yet construction should progress in such a way that the building is aligned as planned, and particularly so in the vertical, when returning into an un-tilted basic state.It is essential that a straight element be constructed that theoretically, even when moving around its design centre point due to varying loads, would have an exactly vertical alignment when all biasing conditions are neutralised. Because of differential raft settlement, differential concrete shortening, and construction tolerances, this ideal situation will rarely be achieved. This paper describes a procedure developed by the authors using GPS observations combined with a network of precision inclination sensor to provide reliable coordinated points at the top of the worldwide highest-rise building under construction in Dubai.

  • PDF