• 제목/요약/키워드: radon gas

검색결과 90건 처리시간 0.02초

라돈의 영향과 관리 (Effects of radon and its management)

  • 조승연;김선홍;김민준
    • 실내환경 및 냄새 학회지
    • /
    • 제16권4호
    • /
    • pp.297-307
    • /
    • 2017
  • As radon is a naturally occurring radioactive gas that can cause lung cancer and is classified as a Group 1 carcinogen, it is essential for the public to be aware of what radon is, and how to manage radon. Therefore, general information on radon, as well as its health risks, measurement methods, mitigation methods and suggestions for its management are addressed in this article. Over the last one to two decades, a number of wide-ranging studies on radon measurement and mitigation have been conducted in Korea, and the results of each study are comparable to the research achievements of other developed countries. For this reason, it is time to systematically establish a well-made Korean radon management organization.

HEALTH RISK ASSESSMENT OF HOUSEHOLD EXPOSURE TO INDOOR RADON IN ASSOCIATION WITH THE DWELLING'S AGE

  • Shahrokhi, Amin;Shokraee, Forough;Reza, Ali;Rahimi, Hasn
    • Journal of Radiation Protection and Research
    • /
    • 제40권3호
    • /
    • pp.155-161
    • /
    • 2015
  • Radon is a naturally occurring radioactive gas and a major indoor contribution of exposure to ionizing radiation in dwellings. $^{222}Rn$ is a health hazard gas what is responsible for thousand lung cancer deaths every year. In this study, indoor radon concentrations present in thirty representative houses in Mahallat city, Iran, were determined in order to estimate lung cancer risk associated with residential radon exposure. Long-term passive method, using CR-39, was used to measure the radon concentration. The results showed an association between the age of the dwellings and the indoor radon concentration that was found, in that the concentration of radon tended to increase as the age of the dwelling also increased. The indoor radon concentrations were calculated to be within the range of $23{\pm}2$ to $350{\pm}26Bq{\cdot}m^{-3}$, with an average of $158Bq{\cdot}m^{-3}$. The annual effective dose from inhaled radon and its decay products was calculated between $0.8{\pm}0.1$ and $12.3{\pm}0.9mSv{\cdot}y^{-1}$, with an average of $5.5mSv{\cdot}y^{-1}$. By taking into consideration the EPA recommendation and ICRP statement, the average annual risk of lung cancer from inhaled radon was calculated as 0.09%, 0.06%, 0.01%, and 0.03% for current smokers (CS), those who had ever smoked (ES), never smokers (NS) and the general population, respectively.

버미큘라이트 및 레드머드를 활용한 산화마그네슘 경화체의 공극 특성 (Pore Properties of Magnesium Oxide Matrix using Red Mud and Vermiculite)

  • 임현웅;이원규;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.120-121
    • /
    • 2018
  • Radon is one of the substances that pollute the indoor air and is classified as a first-level carcinogen by the International Agency for Research on Cancer(IARC) together with asbestos, and it is reported that it can cause lung cancer. The World Health Organization(WHO) reports that lung cancer is the second leading cause of lung cancer, and 6-15% of lung cancer patients report lung cancer caused by radon. Radon occurs in cracks in concrete and aged buildings, and is detected in soil, rocks, groundwater, and so on. It is a colorless, odorless and tasteless gas which is adsorbed to dust in the air and enters through human respiratory system. This study used vermiculite (expanded vermiculite), which has excellent ion exchange ability and a large number of pores, and industrial by - product red mud which has heavy metal adsorption ability, in order to adsorb radon. A matrix capable of adsorbing radon was prepared, and the characteristics of each material were compared and analyzed.

  • PDF

산화마그네슘 경화체 기반 흡착재 종류에 따른 밀도 및 흡수율 특성 (Absorption Ratio and Density Properties According to Absorbent Type Based on Magnesium Oxide Matrix)

  • 권오한;편수정;임현웅;경인수;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.182-183
    • /
    • 2017
  • This research identifies radon gas absorption mechanism by adsorption materials, replacing gypsum board with radon emissions, the density and absorption rates of magnesium were carried out using vermiculite, anthracite, powdered active carbon, bentonite, illite, diatomite as a basic study on the fire resistance type of radon Gas reduction type with absorption and decomposition. As a result of the experiment, diatomite showed the lowest density, and the highestt value was the highest. For the absorption rate, bentonite showed the highest absorption rate, and the anthracite showed the lowest absorption rate.

  • PDF

일부 제조업 사업장의 사무 및 공장동에서의 라돈농도 수준 및 유효선량 평가 (Evaluation of Effective Dose and Exposure Levels of Radon in Office and Plant Buildings)

  • 정은교;김기웅
    • 한국산업보건학회지
    • /
    • 제27권1호
    • /
    • pp.38-45
    • /
    • 2017
  • Objectives: Radon may be second only to smoking as a cause of lung cancer. Radon is a colorless, tasteless radioactive gas that is formed via the radioactive decay of radium. Therefore, radon levels can build up based on the amount of radium contained in construction materials such as phospho-gypsum board or when ventilation rates are low. This study provides our findings from evaluation of radon gas at facilities and offices in an industrial complex. Methods: We evaluated the office rooms and processes of 12 manufacturing factories from May 14, 2014 to September 23, 2014. Short-term data were measured by using real-time monitoring detectors(Model 1030, Sun Nuclear Co., USA) indoors in the office buildings. The radon measurements were recorded at 30-minute intervals over approximately 48 hours. The limit of detection of this instrument is $3.7Bq/m^3$. Also, long-term data were measured by using ${\alpha}-track$ radon detectors(${\alpha}-track$, Rn-tech Co., Korea) in the office and factory buildings. Our detectors were exposed for over 90 days, resulting in a minimum detectable concentration of $7.4Bq/m^3$. Detectors were placed 150-220 cm above the floor. Results: Radon concentrations averaged $20.6{\pm}17.0Bq/m^3$($3.7-115.8Bq/m^3$) in the overall area. The monthly mean concentration of radon by building materials were in the order of gypsum>concrete>cement. Radon concentrations were measured using ${\alpha}-track$ in parallel with direct-reading radon detectors and the two metric methods for radon monitoring were compared. A t-test for the two sampling methods showed that there is no difference between the average radon concentrations(p<0.05). Most of the office buildings did not have central air-conditioning, but several rooms had window- or ceiling-mounted units. Employees could also open windows. The first, second and third floors were used mainly for office work. Conclusions: Radon levels measured during this assessment in the office rooms of buildings and processes in factories were well below the ICRP reference level of $1,000Bq/m^3$ for workplaces and also below the lower USEPA residential guideline of $148Bq/m^3$. The range of indoor annual effective dose due to radon exposure for workers working in the office and factory buildings was 0.01 to 1.45 mSv/yr. Construction materials such as phospho-gypsum board, concrete and cement were the main emission sources for workers' exposure.

환기에 의한 지하 역의 라돈농도 변화 (Influence of Ventilation on the Subway Radon Level)

  • 박덕신;정우성;정병철
    • 한국철도학회논문집
    • /
    • 제3권2호
    • /
    • pp.62-67
    • /
    • 2000
  • Modern people stay at indoor places about 90% of a day. Radon-222 is a gas produced by the radioactive decay of the element radium. And, radon is one of the major indoor air pollutants. Radon moves into the underground space through various routes and is considered to cause lung cancer by hurting the lung tissues. In this study, we measured the subway radon level at 9 stations of 3 lines. According to test results, we can figure out the concentration of radon by lines, times, and measuring points. So, it was found that ventilation conditions are the most important factors in the subway air quality. Finally, we suggested effective and economic management methods of air pollution in the subway.

  • PDF

핀 포토다이오드를 이용한 보급형 라돈 검출기의 구현 (Implementation of Popular Radon Detector Using Pin Photodiode)

  • 윤성하;김재학;김규식
    • 전자공학회논문지
    • /
    • 제53권11호
    • /
    • pp.99-106
    • /
    • 2016
  • 라돈이 기관지나 폐포에 머무르게 될 때 라돈의 붕괴로 인해 자핵종(알파선, 베타선, 감마선 등)들이 생성되면서 이것들이 방사선을 방출하는데 세포의 염색체에 돌연변이를 일으켜 폐암을 발생할 가능성이 존재한다. 다시 말해 폐암의 원인이 라돈가스 때문이라기보다는 흡수된 일부 라돈의 붕괴로 인해 생기는 부산물이 방사선을 방출하기 때문이라고 할 수 있다. 사람이 연간 노출되는 방사선의 82%가 자연방사선에 의한 것인데 그중 대부분이 라돈이다. 실내의 라돈 농도를 적절하게 제어할 수 있다면 폐암의 발생확률을 30%나 억제할 수 있다고 알려져 있다. 아직까지 실내의 라돈의 농도를 측정하는 데는 외국의 라돈 센서를 사용하고 있는 실정이다. 실내 라돈 방출량에 대한 데이터 구축과 국내에 맞는 실용적인 라돈측정기기를 개발하도록하는 연구가 필요하다. 본 논문에서는 PIN Photodiode를 이용하여 라돈의 농도를 측정하는 라돈 검출기 구현 방법을 제안한다. 실험을 통해서, PIN photodiode의 라돈 센서 모듈로서의 이용 가능성에 대하여 확인하였다.

서울지역 라돈농도의 분포예측을 위한 공간분석법 연구 (Studies on the Spatial Analysis for Distribution Estimation of Radon Concentration at the Seoul Area)

  • 백승아;이태정;김신도;김동술
    • 한국대기환경학회지
    • /
    • 제24권5호
    • /
    • pp.538-550
    • /
    • 2008
  • Radon is an invisible, odorless, and radioactive gas. It is formed by the disintegration of radium, which is a decay product of uranium. Some amounts of radon gas and its products are present ubiquitously in the soil, water, and air. Particularly high radon levels occur in regions of high uranium content. Although radon is permeable into indoor environment not only through geological features (bed rock and permeability) but also through the construction materials and underground water, the radiation from the geological features is generally main exposure factor. So there can be a problem in a certain space such as the underground and/or relatively poor ventilation condition. In this study, a GIS technique was used in order to investigate spatial distribution of radon measured from sub- way stations of 1 thru 8 in Seoul, Korea in 1991, 1998, 2001, and 2006. Spatial analysis was applied to reproduce the radon distribution. We utilized spatial analysis techniques such as inverse distance weighted averaging (IDW) and kriging techniques which are widely used to relate between different spatial points. To validate the results from the analyses, the jackknife technique for an uncertainty test was performed. When the number of measuring sites was less than 100 and also when the number of omitted sites increased, the kriging technique was better than IDW. On the other hand, when the number of sites was over 100, IDW technique was better than kriging technique. Thus the selection of analytical tool was affected sensitives by the analysis based on the number of measuring sites.

CR-39를 사용한 제주도지역 토양중의 라돈측정 (Measurement of Radon Concentration in the near-surface Soil Gas by CR-39 Detectors)

  • 강동우;김현구
    • Journal of Radiation Protection and Research
    • /
    • 제13권2호
    • /
    • pp.57-66
    • /
    • 1988
  • CR-39 검출기를 부착한 두 종류의 라돈컵을 사용하여 토양중의 라돈 농도를 제주도 일원의 4개지역(제주시, 서귀포시, 대정읍, 성산읍)에서 측정하였다. 본 실험에서는 CR-39 검출기의 최적 부식조건을 $70^{\circ}C$, 6.25N NaOH, 5.5시간으로 결정하였으며, 두 종류의 라돈컵을 지름 15cm, 깊이 50m인 두개의 땅구덩이에 각각 설치하였는데 이중 밀폐된 라돈컵은 구덩이 바닥의 토양 위에, 개방된 라돈컵은 지지대를 이용하여 바닥에서 45cm높이에 설치하였다. CR-39의 부식조건으로는 $70^{\circ}C$의 6.25N NaOH 용액에서 5.5시간 동안 처리하였으며 환산인자로 $1track/mm^{2}{\cdot}30day=0.059Bq/\ell$을 얻었다. 1987년 5월 1일부터 1988년 4월 23일까지 측정한 결과 30일간의 평균 라돈 농도의 연평균치는 개방된 라돈컵과 밀폐된 라돈컵에서 각각 $3.1{\pm}0.3Bq/{\ell}$$1.7{\pm}0.2Bq/\ell$였다.

  • PDF