• 제목/요약/키워드: radius of influence

검색결과 338건 처리시간 0.02초

레이디얼-전방압출에서 튜브성형에 관한 해석 및 실험 (Numerical and Experimental Investigation on the Tube Forming in the Radial-Forward Extrusion)

  • 고병두;장동환;최호준;황병복
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.168-175
    • /
    • 2003
  • In this paper, the tube forming by radial-forward extrusion is analyzed by numerical simulation and experiments. The paper discusses the effects of process variables such as gap height, relative gap width and die corner radius on tube forming. The influence of deformation patterns of flange in radial extrusion on forward extrusion for tube forming is investigated and summarized in terms of the maximum forming force and hardness variations along the extrusion path. Furthermore the external defects are shown experimentally during the forming operation. Based on finite element analysis in conjunction with experimental test in Al alloy, analysis is performed for important parameter combination in order to reduce forming defects. Eventually, the process parameters for safe forming are suggested in order to reduce the forming defects.

퍼지 논리기반 HAUSDORFF 거리를 이용한 물체 인식 (Comparing object images using fuzzy-logic induced Hausdorff Distance)

  • 강환일
    • 지능정보연구
    • /
    • 제6권1호
    • /
    • pp.65-72
    • /
    • 2000
  • 본 논문에서는 쿼리 영상에 대하여 가장 정확하게 정합되는 영상을 찾기 위한 새로운 이진 영상 정합 방법인 퍼지 기반 하우스도르프 방법을 제안한다, 먼저 하우스도르프 거리를 이용하여 최소거리 분포를 얻은 후 반경에 해당하는 집함의 개수를 이용하여 소속함수로 표현한다. 제안한 방법에서는 소속함수로 정의된 거리 분포에 대하여 퍼지 추론과정을 도입하여 최종적인 정합 후보를 구하게 된다. 제안된 방법을 실제 잡음이 부가된 얼굴 영상과 문자 인식에 적용하여 그 성능을 검증하였다.

  • PDF

다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계 (AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS)

  • 최재민;전흥재;이수홍;한종현
    • 대한치과보철학회지
    • /
    • 제44권2호
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

Effect of a Metal-strap Thicknesses on the Bending Process

  • Jung, In-Suk;Kim, Jung-Whan;Lee, Weon-Hee;Chang, Jun-Pok;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.14-20
    • /
    • 2001
  • On the bending process, metal-strap plays an important role in dispersing the stress generated in wood. Therefore, the metal-strap has more influence on the property of bentwood materials. The effect of the metal-strap thickness for bentwood was examined. The effect of metal-strap on the bending properties of Korean red pine(Pinus densiflora Sieb. et Zucc.)was investigated in this research. The metal-strap thickness is divided into 4 kinds such as 1.0, 0.8, 0.6, 0.4 mm. The specimens were selected by grain such as annual ring angles, flat grain and half-edge grain specimens. As a result of this study, the bending ability of 1.0, 0.8 mm, thickness of half-edge grain specimens was better than flat grain specimens but the result of 0.6, 0.4 mm were reversed. The bending ability of half-edge grain was better than flat grain and the grade was higher. When the processed specimens were dried, the radius of curvature(ROC) was decreased became drying-stress was not perfectly dispersed. An optimum drying-condition would deminish this phenomenon.

  • PDF

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제11권2호
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.122-128
    • /
    • 2004
  • In order to make a doubly-curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It mainly affects the generation of curvature in its own direction with the forming depth and the thickness of the material.

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.

완전 용입 십자형 필릿용접부에서 피로파괴특성과 피로수명에 관한 연구 (A Study on Characteristics of Fatigue Failure and Fatigue Life in Full Penetrated Cruciform Fillet Weld Zone)

  • 이용복
    • 한국가스학회지
    • /
    • 제16권4호
    • /
    • pp.16-22
    • /
    • 2012
  • 용접기술의 발달과 더불어 기계, 교량, 선박 그리고 가스설비 등의 제작공정을 위하여 용접의 이용이 증가하고 있다. 따라서 그들의 용접 구조물 제작을 위하여 높은 생산성과 안전설계를 고려하는 용접 법을 개발하는 것이 요구되고 있다. 본 연구에서는 재료 두께, 용접층수, 하중 방향 그리고 토우부의 노치 반경과 관련하여 완전 용입 십자형 필릿 용접부의 피로강도 및 피로수명의 특성에 대하여 기초적으로 고찰하였다. 대부분의 피로파괴는 십자형 필릿 용접의 토우부에서 발생하였다. 피로강도 및 피로수명은 토우 부의 노치 반경과 플랭크 각에 의한 응력집중의 영향을 받고 있다. 토우부의 금속이 다층 용접에 의하여 어닐링 되고 확산 되었으며 그 결과 침상 페라이트 조직이 형성되어 피로강도와 피로수명을 향상시켰다.

점진적 롤 성형 공정의 선박 곡가공 적용을 위한 공정 변수 분석 (Analysis of Process Parameters in the Incremental Roll Forming Process for the Application to Doubly Curved Ship Hull Plate)

  • 심도식;윤석준;이석렬;성대용;한용섭;한명수;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2005
  • In order to make a doubly-cowed sheet metal effectively, the sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process without holder. The experimental equipment has been set up with the roll set which consists of two pairs of support rolls and one center roll. In order to analyze process parameters in the incremental roll forming process for the application to doubly curved ship hull plate, the orthogonal array is adopted. From the FEM results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. Also, the forming load and torque from the FEM simulation are acceptable to the system development of the incremental roll forming process for the forming of ship hull plate.

  • PDF