• 제목/요약/키워드: radish collector

검색결과 4건 처리시간 0.02초

Theoretical analysis of power requirement of a four-row tractor-mounted radish collector

  • Khine Myat Swe;Mohammod Ali;Milon Chowdhury;Md Nasim Reza;Md Ashrafuzzaman Gulandaz;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.729-748
    • /
    • 2022
  • Development of radish collectors may enhance radish production and promote upland crop mechanization in the Republic of Korea. Theoretical analysis of power is crucial to ensure the optimum design of agricultural machinery. The aim of the present study is to analyze theoretically the power requirement of a tractor-mounted radish collector under development and to propose design guidelines. The important components of the radish collector were belt-type conveyors, three hydraulic motors, and a direct current (DC) winch motor to operate the total radish collecting process. Theoretical equations were used to calculate the hydraulic motor's power, winch motor power, and draft power at loaded and unloaded conditions. A variety of tractors (44 - 74 kW) and different soil characteristics (hard, firm, tilted, and sandy) were considered to investigate the appropriate drawbar power. Variations of the power requirement of the tractor-mounted radish collector were observed due to modifications of the design parameters. The required hydraulic power of the stem cutting conveyor, stem cutting blade, and transfer conveyor of the radish collector were 0.23 and 0.24, 0.18 and 0.19, and 0.19 and 0.22 kW under unloaded and loaded conditions, respectively. The maximum draft power was calculated as 0.89, 1.07, 1.25, and 1.61 kW at a 30° tilted angle for hard, firm, tilted, and sandy soil, respectively. The calculation showed 2.07 kW DC power was required for unfolding or folding the stem-cutting conveyor. A maximum power of 4.78 kW was prescribed for conducting the whole process of the tractor-mounted radish collector. The analysis of power introduced in this study will be helpful to select the appropriate design parameters for the successful development of a tractor-mounted radish collector.

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.

태양열 건조 시스템에 관한 실험적 연구(I) - 무우절편의 태양열 건조 특성 - (Experimental Studies for Solar Drying System of Agricultural Products(I) - Solar drying characteristics for radish -)

  • 고학균;김용현;송대빈;김만수
    • 태양에너지
    • /
    • 제11권3호
    • /
    • pp.9-20
    • /
    • 1991
  • 무우절편의 태양열건조 및 천일건조 실험을 수행하여 건조 특성 및 품질 변화 특성을 비교하여 분석하였다. 무우절편의 태양열 건조 시스템은 공기 가열식 태양열 집열기와 터널 건조실로 구성된다. 태양열 집열기의 구성 요소에 에너지 평형식을 적용하여 일사량과 송풍량의 변화에 따른 집열기의 집열성능을 분석할 수 있는 시뮬레이션 모형을 개발하였다.

  • PDF