• 제목/요약/키워드: radiographic image enhancement

검색결과 14건 처리시간 0.017초

Multispectral X-ray imaging to distinguish among dental materials

  • Peter, Ann-Christin;Schnaubelt, Matthias;Gente, Michael
    • Imaging Science in Dentistry
    • /
    • 제47권4호
    • /
    • pp.247-254
    • /
    • 2017
  • Purpose: Dual-energy X-ray imaging is widely used today in various areas of medicine and in other applications. However, no similar technique exists for dental applications. In this study, we propose a dual-energy technique for dental diagnoses based on voltage-switching. Materials and Methods: The method presented in this study allowed different groups of materials to be classified based on atomic number, thereby enabling two-dimensional images to be colorized. Computer simulations showed the feasibility of this approach. Using a number of different samples with typical biologic and synthetic dental materials, the technique was applied to radiographs acquired with a commercially available dental X-ray unit. Results: This technique provided a novel visual representation of the intraoral environment in three colors, and is of diagnostic value when compared to state-of-the-art grayscale images, since the oral cavity often contains multiple permanent foreign materials. Conclusion: This work developed a technique for two-dimensional dual-energy imaging in the context of dental applications and showed its feasibility with a commercial dental X-ray unit in simulation and experimental studies.

Repeat analysis of intraoral digital imaging performed by undergraduate students using a complementary metal oxide semiconductor sensor: An institutional case study

  • Yusof, Mohd Yusmiaidil Putera Mohd;Rahman, Nur Liyana Abdul;Asri, Amiza Aqiela Ahmad;Othman, Noor Ilyani;Mokhtar, Ilham Wan
    • Imaging Science in Dentistry
    • /
    • 제47권4호
    • /
    • pp.233-239
    • /
    • 2017
  • Purpose: This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor(CMOS) intraoral sensor. Materials and Methods: A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis. Results: The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and inter-observer agreement was achieved. Conclusion: The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients

Vertical root fracture diagnosis in teeth with metallic posts: Impact of metal artifact reduction and sharpening filters

  • Debora Costa Ruiz;Lucas P. Lopes Rosado;Rocharles Cavalcante Fontenele;Amanda Farias-Gomes;Deborah Queiroz Freitas
    • Imaging Science in Dentistry
    • /
    • 제54권2호
    • /
    • pp.139-145
    • /
    • 2024
  • Purpose: This study examined the influence of a metal artifact reduction (MAR) tool, sharpening filters, and their combination on the diagnosis of vertical root fracture (VRF) in teeth with metallic posts using cone-beam computed tomography (CBCT). Materials and Methods: Twenty single-rooted human premolars - 9 with VRF and 11 without - were individually placed in a human mandible. A metallic post composed of a cobalt-chromium alloy was inserted into the root canal of each tooth. CBCT scans were then acquired under the following parameters: 8 mA, a 5×5 cm field of view, a voxel size of 0.085 mm, 90 kVp, and with MAR either enabled or disabled. Five oral and maxillofacial radiologists independently evaluated the CBCT exams under each MAR mode and across 3 sharpening filter conditions: no filter, Sharpen 1×, and Sharpen 2×. The diagnostic performance was quantified by the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. These metrics were compared using 2-way analysis of variance with a significance level of α=5%. Intra- and inter-examiner agreement were assessed using the weighted kappa test. Results: Neither MAR nor the application of sharpening filters significantly impacted AUC or specificity (P>0.05). However, sensitivity increased when MAR was combined with Sharpen 1× and Sharpen 2× (P=0.015). The intra-examiner agreement ranged from fair to substantial (0.34-0.66), while the inter-examiner agreement ranged from fair to moderate (0.27-0.41). Conclusion: MAR in conjunction with sharpening filters improved VRF detection; therefore, their combined use is recommended in cases of suspected VRF.

A Study to Compare the Radiation Absorbed Dose of the C-arm Fluoroscopic Modes

  • Cho, Jae-Hun;Kim, Jae-Yun;Kang, Joo-Eun;Park, Pyong-Eun;Kim, Jae-Hun;Lim, Jeong-Ae;Kim, Hae-Kyoung;Woo, Nam-Sik
    • The Korean Journal of Pain
    • /
    • 제24권4호
    • /
    • pp.199-204
    • /
    • 2011
  • Background: Although many clinicians know about the reducing effects of the pulsed and low-dose modes for fluoroscopic radiation when performing interventional procedures, few studies have quantified the reduction of radiation-absorbed doses (RADs). The aim of this study is to compare how much the RADs from a fluoroscopy are reduced according to the C-arm fluoroscopic modes used. Methods: We measured the RADs in the C-arm fluoroscopic modes including 'conventional mode', 'pulsed mode', 'low-dose mode', and 'pulsed + low-dose mode'. Clinical imaging conditions were simulated using a lead apron instead of a patient. According to each mode, one experimenter radiographed the lead apron, which was on the table, consecutively 5 times on the AP views. We regarded this as one set and a total of 10 sets were done according to each mode. Cumulative exposure time, RADs, peak X-ray energy, and current, which were viewed on the monitor, were recorded. Results: Pulsed, low-dose, and pulsed + low-dose modes showed significantly decreased RADs by 32%, 57%, and 83% compared to the conventional mode. The mean cumulative exposure time was significantly lower in the pulsed and pulsed + low-dose modes than in the conventional mode. All modes had pretty much the same peak X-ray energy. The mean current was significantly lower in the low-dose and pulsed + low-dose modes than in the conventional mode. Conclusions: The use of the pulsed and low-dose modes together significantly reduced the RADs compared to the conventional mode. Therefore, the proper use of the fluoroscopy and its C-arm modes will reduce the radiation exposure of patients and clinicians.