• Title/Summary/Keyword: radiocarbon dating

Search Result 73, Processing Time 0.03 seconds

A Study on Tree-ring Dating and Speciation of Charcoal found in Pumiceous Deposit of the Quaternary Nari Caldera, Ulleung Island, Korea (신생대 제4기 울릉도 나리칼데라 부석층에서 산출된 탄화목의 연륜연대 및 수종식별 연구)

  • Im, Ji Hyeon;Choo, Chang Oh
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.501-508
    • /
    • 2015
  • The purpose of this study is to provide an inquiry into paleovegetation (paleoenvironment), eruption age and inferred emplacement temperature of pyroclastic deposit using charcoal occurred in the Quaternary Nari Caldera, Ulleung Island. In order to obtain the data, we carried out species identification and tree-ring analysis, radiocarbon dating for the charcoal. This sample was collected from pumiceous deposit in lowermost member(Member N-5) of the Nari Tephra Formation, which corresponds to the wood branch that has well preserved the tree-ring structure. Speciation and outermost tree-ring of wood reveal Picea spp. and $263+{\alpha}$ years. The calibrated ages from the center(pith) to the outermost tree-ring are $20,260{\pm}230$, $19,995{\pm}245$, and $19,975{\pm}265cal\;BP$, respectively, which are accordant with the tree-ring position. The youngest age, <19,710 cal BP would have implications for the eruptive age of Member N-5. Our results indicate that Picea spp. is the paleovegetation representing that Nari Caldera was under cold and wet climate conditions during the late Pleistocene. Based on the silky luster, brittleness, color, and streak of charcoal, etc., the lowest emplacement temperatures of pyroclastic flow are interpreted to have been at least as high as $350{\sim}500^{\circ}C$.

Dating Wooden Artifacts Excavated at Imdang-dong Site, Gyeongsan, Korea and Interpreting the Paleoenvironment according to the Wood Identification (경산 임당 유적 출토 목제유물의 연대분석 및 수종분석에 따른 고기후환경 해석)

  • Lee, Kwang-Hee;Seo, Jeong-Wook;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.241-252
    • /
    • 2018
  • It was estimated that the Imdang-dong site of Gyungsan was constructed in the 2nd to 4th century based on excavated layers and artifacts. This study was carried out to verify the result using the dendrochronological analysis of six wooden pillars excavated at the site. As a result, it was proven that 6 specimens were not cut at the same age because their tree-ring chronologies were not synchronized each other. And more, it was reconfirmed in wiggle matching dating as confirming two of them were dated to A.D. 94-135 and A.D. 224-289, respectively. It was coincided with the above-mentioned estimated age. In wood identification, most of them were identified as Hovenia dulcis Thunb., Tilia spp., Ulmus spp. which grow usually under cool environment. Based on the result, we could conclude that the climate at that time was cooler than the present.

The Environmental Change and Geomorphic Development of Unsan Alluvial Plain in Kangreung City during the Late Holocene (강릉 운산충적평야의 홀로세 후기의 환경변화와 지형발달)

  • 윤순옥
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.2
    • /
    • pp.127-142
    • /
    • 1998
  • Unsan alluvial plain is the backmarsh of Seomseokcheon which is a river originated from Chilseongdae(954m) on Mts Taeback, flowing into Donghae in southern Kangreung City, Kangwon Province. The vegetation change, geomorphic develoopment and depositional environment during the late Holocene have been investigated, using the methods such as boring, pollen analysis and radiocarbon dating. Because the deposits fo the study area are mainly consisted of peat and paety sand, they contained many pollen fossils. The peat layer has been sedimented since the high sea-level periods, 3,200 y. BP, and the records of vegetation change until now has well preserved here. According to archeological researches and the results of pollen analysis in east coast of Korea, it is supposed that the prehistoric rice farming in this area has begun since ca. 1,800 y. BP.

  • PDF

Radiocarbon Analysis of water Using Direct $CO_2$ Absorption Method (이산화탄소 직접흡수법을 이용한 자연수의 방사성탄소동위원소분석)

  • 고용권;배대석;김천수;김성용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2001
  • Radiocarbon ($^{14}C$) and tritium in water have been applied to hydrogeology as a tool for dating of groundwater. The long half-life of $^{14}C$(5,730 years) makes it useful for evaluation of residence time of groundwater, However, the $^{14}C$ has not been applied to groundwater studies in Korea, owing to the absence of preparation line for $^{14}C$ analysis. By this time $^{14}C$ of groundwater has been analyzed mainly using benzene synthesizer, which is so complicate and time-consuming that has been is limitedly applied to hydrogeology. Recently, the direct $CO_2$ absorption method for $^{14}C$ analysis was developed and introduced to KAERI for the evaluation of domestic groundwater system. The results of $^{14}C$ in groundwater would be usefully applied to hydrogeological studies such as the well understanding of groundwater flow system in depth. The reliability of our $^{14}C$ data was confirmed by inter-comparison with the qualified international isotope laboratory.

  • PDF

Study on production process of graphite for biological applications of 14C-accelerator mass spectrometry

  • Ha, Yeong Su;Kim, Kye-Ryung;Cho, Yong-Sub;Choe, Kyumin;Kang, Chaewon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Accelerator mass spectrometry (AMS) is a powerful detection technique with the exquisite sensitivity and high precision compared with other traditional analytical techniques. Accelerator mass spectrometry can be widely applied in the technique of radiocarbon dating in the fields of archeology, geology and oceanography. The ability of accelerator mass spectrometry to measure rare 14C concentrations in microgram and even sub-microgram amounts suggests that extension of 14C-accelerator mass spectrometry to biomedical field is a natural and attractive application of the technology. Drug development processes are costly, risky, and time consuming. However, the use of 14C-accelerator mass spectrometry allows absorption, distribution, metabolism and excretion (ADME) studies easier to understand pharmacokinetics of drug candidates. Over the last few decades, accelerator mass spectrometry and its applications to preclinical/clinical trials have significantly increased. For accelerator mass spectrometry analysis of biological samples, graphitization processes of samples are important. In this paper, we present a detailed sample preparation procedure to apply to graphitization of biological samples for accelerator mass spectrometry.

Characteristics of Large-Scale Fault Zone and Quaternary Fault Movement in Maegok-dong, Ulsan (울산 매곡동 일대의 대규모 단층대 특성과 제4기 단층운동)

  • Cho, Jin-Hyuck;Kim, Young-Seog;Gwon, Sehyeon;Edwards, Paul;Rezaei, Sowreh;Kim, Taehyung;Lim, Soon-Bok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.485-498
    • /
    • 2015
  • Structural analysis for a large-scale fault in Maegok-dong, Ulsan, was carried out based on filed-works to investigate the geometric and kinematic characteristics of the fault as well as its Quaternary slip. As results, a series of repeated stratigraphy, minor faults, fracture zones, and deformation band clusters are observed over a distance of about 100 m in the first studied site consisting of sedimentary rocks, which may indicate the damage zone of a large-scale fault in this site. In the second site, mainly composed of granitic clastic rocks, a large-scale thrust fault is expected based on low-angle dipping faults showing branched and/or merged patterns. Age of the last slip on this fault was restrained as after 33,275 ± 355 yr BP based on radiocarbon dating for organic material included in the gouge zone. Dimension of fault damage zone, dominant sense of slip, and age of the slip event associated with the fault suggest that these structures have a close relationship with the Ulsan Fault and/or Yeonil Tectonic Line, which are well-known large-scale neotectonic structural features around the study area. Therefore, it is necessary to study the characteristics of the faults in detail based on structural geology and paleoseismology in order to ensure seismic and geologic stability of the buildings under construction, and to prevent geologic hazards in this area.

Asian Monsoon Variation revealed by the speleothem records from Pyeongchang, Korea (동굴생성물(석순)을 이용한 한반도 고기후 연구 - 홀로세의 몬순 변화를 중심으로 -)

  • Yu, Keun Bae;Kong, Dal-Yong;Lee, Hyoun A;Kim, Chan Woong;Yim, Jong Seo
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.2
    • /
    • pp.439-449
    • /
    • 2016
  • Understanding the variability of the monsoon system requires information about the changes in the past. We revealed the Mid- and Late-Holocene paleo-climate changes and Asian monsoon variations in Korea by the speleothem records from Pyeongchang. To this, we used thicknesses of growth laminae, stable-isotope analysis (carbon, oxygen), and radio-carbon age dating. The speleothem grew between ~4580 yr BP to ~660 yr BP and we identified several weak AM(Asian monsoon) events, such as Middle Bronze Age Cold Epoch, Iron Age Cold Epoch, and Dark Age Cold Period. These events might have occurred relatively early compared to those of other studies.

  • PDF

Age comparisons of coastal sand dune stratum in Chollipo, Korea by altering preheat and cut-heat, and grain size distributions by OSL dating (예열 및 cut-heat 온도와 입자의 크기에 따른 천리포 해안사구 퇴적층의 OSL 연대측정 비교)

  • Bang, Jun-Hwan;Kim, Ki-Dong;Eum, Chul-Hun
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • The samples from coastal sand dune stratum in Chollipo were dated by Optically Stimulated Luminescence (OSL) with modified Single Aliquots Regeneration (SAR) method. It is possible to choose the OSL signals by thermal treatments such as preheat and cut-heat in SAR procedure. Preheat and cut-heat of $260^{\circ}C$ for 10 sec $-220^{\circ}C$ for 0 sec, and $270^{\circ}C$ for 10 sec $-270^{\circ}C$ for 10 sec were applied for estimation of equivalent dose of the samples. The OSL signals from different thermal treatment were used for OSL dating. Equivalent dose were estimated with 4 fractionated grain distributions with $75{\mu}m$, $150{\mu}m$ and $200{\mu}m$ sieves with above heating treatments. Consequently, the estimated dose were differently valued in sample sizes and applied heating treatments, different stratum ages were calculated. The ages from radiocarbon dating were compared with the OSL ages. The ages varying with grain sizes produce that the site sampled were formed with mixed soil sources.

Geochemical Characteristics and Quaternary Environmental Change of Unconsolidated Sediments from the Seokgwan-dong Paleolithic Site in Seoul, Korea (서울 석관동 유적의 미고결 퇴적층의 지구화학적 특성 및 제4기 지표환경변화)

  • Lee, Hyo-Min;Lee, Jin-Young;Kim, Ju-Yong;Hong, Sei-Sun;Park, Jun-Bum
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.373-388
    • /
    • 2016
  • To understand human activity in the past, the information about past environmental change including geomorphological and climatic conditions is essential and this can be traced by using age dating and geochemical analysis of sediments from the prehistoric sites. The sedimentary sequence of Seokgwan-dong Paleolithic Site located in Seoul was 5m long unconsolidated sediments and consists of lower part bedrock weathering sediments, slope deposits and upper-part fluvial deposits. In this study, upper part sediments were used to reconstruct past environmental change through age dating and various physical and chemical analyses including grain size, magnetic susceptibility and mineral and elements. The fluvial sediments can be divided into 4 units including three organic layers. Grain size analysis results showed that the sediments were very poorly sorted with fining upward features. Magnetic susceptibility was relatively high in the organic layers, indicating environmental changes causing mineral composition change at that times. The mineral and major element composition are similar to Jurassic biotite granite which mainly consists of quartz, K-feldspar, biotite and muscovite. The radiocarbon age of $14,240{\pm}80yr$ BP was obtained from the lower most organic layer of Unit III(O), suggesting that the fluvial sediments formed at least from the early stage of deglacial period after the end of Last Glacial Maximum. Subsequent wet and warm climates and resultant fluvial process including slope sedimentation during the Holocene may have been responsible for the sedimentary sequence in Seokgwan-dong paleolithic site and surrounding area. The observed organic layers suggests frequent wetland occurrence combined with natural levee changes in this area.

The Calendar Date of Pottery with Ring-Rim -Appearance Date of the Slim Bronze Dagger Culture and Ironware- (점토대토기의 실연대 -세형동검문화의 성립과 철기의 출현연대-)

  • Lee, Chang Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.48-101
    • /
    • 2010
  • This paper estimated the calendar date of pottery with ring-rim(粘土帶土器) with the radiocarbon dating. This was based on archaeological facts with comparing line relations and radiocarbon dates of Yayoi pottery(彌生土器). As a result, I understood that pottery with circle ring-rim(圓形粘土帶土器) appeared in BC 6c, pottery with triangle ringrim(三角形粘土帶土器) appeared at the time in BC 300 . Based on the calendar date and aspect of ironware and pottery in grave, I kept in BC 4c with appearance date of ironware. And I kept in BC 5c with appearance date of the slim bronze dagger culture. Korea and Japan common chronological order were built for the first time based on radiocarbon dates, line relations of pottery with ring-rim and Yayoi pottery. This is the calendar date to date back approximately 100~300 years from the existing the calendar date. Current periodization does not match in the calendar date when I built it newly. Therefore I suggested it as follows. Early iron age is from the first~middle part BC 4c to BC 100. And the latter half of Bronze age is from BC 6c to the front appearance of ironware. Then Songguk-ri type(松菊里式) becomes staudard type of pottery in the middle stage of Bronze age.