• Title/Summary/Keyword: radioactive wastewater

Search Result 46, Processing Time 0.026 seconds

Removal and Decomposition of Impurities in Wastewater From the HyBRID Decontamination Process of the Primary System in a Nuclear Power Plant (원전 일차계통 HyBRID 제염공정 발생 폐액 내 불순물 제거 및 분해)

  • Eun, Hee-Chul;Jung, Jun-Young;Park, Sang-Yoon;Park, Jeong-Sun;Chang, Na-On;Won, Hui-Jun;Sim, Ji-Hyoung;Kim, Seon-Byeong;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.429-435
    • /
    • 2019
  • Decontamination wastewater generated from the HyBRID decontamination process of the primary system in a nuclear power plant contains impurities such as sulfate ions, metal ions containing radioactive nuclides, and hydrazine (carcinogenic agent). For this reason, it is necessary to develop a technology to remove these impurities from the wastewater to a safe level. In this study, it has been conducted to remove the impurities using a decontamination wastewater surrogate, and a treatment process of the HyBRID decontamination wastewater has been established. The performance and applicability of the treatment process have been verified through 1 L scale of replicates and a pilot scale (300 L/batch) test.

Evaluation on Decomposition Processes of Laundry wastewater produced from Steam Generator (증기발생기 세정폐액 처리 공정 평가)

  • 강덕원;이홍주;최영우;이두호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.78-82
    • /
    • 2003
  • For the decomposition of laundry wastewater containing Fe-EDTA produced from the steam generators in nuclear power plants, Supercritical Water Oxidation (SCWO) Process, Photocatalytic Oxidation (PO) Process, and Dielectric Barrier Discharge (DBD) Atmospheric Pressure Plasma Process were evaluated. Even though EDTA was converted over 99.98 % by the SCWO process, it was estimated that the countermeasure against corrosion of the equipment should be reinforced for the process stability. It was considered that the PO process is not appropriate for the decomposition of high concentrated laundry wastewater since the conversion ratio of EDTA was around 10 %. Finally, High efficiency of the decomposition of organic matter (methylene blue) was obtained using DBD process even low energy was supplied. However there is still room for the evaluation of EDTA decomposition in order that the DBD process should be applied for the field samples.

  • PDF

Removal of Cs+, Sr2+, and Co2+ Ions from the Mixture of Organics and Suspended Solids Aqueous Solutions by Zeolites

  • Fang, Xiang-Hong;Fang, Fang;Lu, Chun-Hai;Zheng, Lei
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.556-561
    • /
    • 2017
  • Serving as an excellent adsorbent and inorganic ion exchanger in the water purification field, zeolite 4A has in this work presented a strong capability for purifying radioactive waste, such as $Sr^{2+}$, $Cs^+$, and $Co^{2+}$ in water. During the processes of decontamination and decommissioning of suspended solids and organics in low-level radioactive wastewater, the purification performance of zeolite 4A has been studied. Under ambient temperature and neutral condition, zeolite 4A absorbed simulated radionuclides such as $Sr^{2+}$, $Cs^+$, and $Co^{2+}$ with an absorption rate of almost 90%. Additionally, in alkaline condition, the adsorption percentage even approached 98.7%. After conducting research on suspended solids and organics of zeolite 4A for the treatment of radionuclides, it was found that the suspended clay was conducive to absorption, whereas the absorption of organics in solution was determined by the species of radionuclides and organics. Therefore, zeolite 4A has considerable potential in the treatment of radioactive wastewater.

Assessment of Cobalt Removal from Radioactive Liquid Waste Using Electrocoagulation (방사성 액체폐기물 내 코발트 제거를 위한 전기응집공법의 활용 가능성 평가)

  • Ko, Myoung-Soo;Kim, Yong-Tae;Kim, Young-Gwang;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.177-183
    • /
    • 2018
  • This study assessed an application of electrocoagulation (EC) for the removal of cobalt (Co) in radioactive liquid waste from nuclear power plant. The EC process is an electrochemical means to remove a contaminant in wastewater and a novel process to complement the disadvantage of chemical treatment and membrane process. Radioactive liquid waste has been produced from washing process of radio nuclide power plant cooling system. The EC process eliminates Co from the electrolyte within 10 min; in addition, the dewatered sludge produced in EC process is only 0.2 g. Therefore, the EC process is a promising technique for the removal of Co in radioactive liquid waste and volume reduction of wastes.

Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater

  • Jun, Byung-Moon;Jang, Min;Park, Chang Min;Han, Jonghun;Yoon, Yeomin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1201-1207
    • /
    • 2020
  • This study explored whether MXene (Ti3C2Tx) could remove radioactive Cs+ from model nuclear wastewater. Various adsorption tests were performed and the physical aspects of the interaction were investigated. We varied the MXene dosage, Cs+ initial concentration, solution pH, solution temperature and exposure time. MXene adsorption exhibited very fast kinetics, based on the fact that equilibrium was achieved within 1 h. MXene exhibited an outstanding adsorption capacity (148 mg g-1) at adsorbent and adsorbate concentrations of 5 and 2 mg L-1, respectively, at neutral pH condition (i.e., pH 7). We explored Cs+ adsorption by MXene in the presence of four different ions (NaCl, KCl, CaCl2 and MgCl2) and three different organic acids (sodium oleate, oxalic acid, and citric acid). The Cs+ removal rate changed in the presence of these components; adsorption of Cs+ by MXene thus involved ion exchange, supported by both Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. We confirmed that MXene was re-usable for at least four cycles. MXene is cost-effective and practical when used to adsorb radionuclides (e.g., Cs+) in nuclear wastewater.

The Separation of Particulate within PFC Decontamination Wastewater Generated by PFC Decontamination (PFC 제염 후 발생된 제염폐액 내 오염입자의 제거)

  • Kim Gye-Nam;Lee Sung-Yeol;Won Hui-Jun;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho;narayan M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.32-39
    • /
    • 2005
  • When PFC(Perfluorocarbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was $0.1{\sim}10{\mu}m$. Hot particulate of more than $2{\mu}m$ in PFC contamination wastewater was removed by first filter and then hot particulate of more than $0.2{\mu}m$ was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was $95{\sim}97\%$. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate $H_2$ gas in alpha radioactivity environment.

  • PDF

On decrease program of Radioactive Wastewater and Sewages in High Dose Radioiodine Therapy Ward (고용량 방사성옥소 치료병실의 오.폐수 저감화를 위한 연구)

  • Ryu, Jae-Kwang;Jung, Woo-Young;Shin, Sang-Ki;Cho, Shee-Man
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • Purpose: In general, We discharged radioactive wastewater and sewages less than $8.1{\times}10^{-13}$ Ci/ml in a exclusive water-purifier tank. Our hospital operating three exclusive water-purifier tank for radioactive wastewater and sewages of 60 tons capacity respectively. In order to meet the criteria it need a enough decay more than 125 days per each exclusive tank. However, recently we fell into the serious situation that decay period was decreased remarkably, owing to the wastewater amount increased rapidly by enlarge the therapy ward. For that reason, in this article, I'd like to say the way that reducing of radioactive wastewater and sewages rationally. Materials and Methods: From January, 2006 to October, four hundred and two cases were analyzed. They were all hospitalized during 3 days and 2 nights. We calculated the average amount of water used (include toilet water used, shower water used, washstand water used, $\cdots$), each exclusive water-purifier tank's decay period, as well as try to search the increased factors about water-purifier tank inflow flux by re-analysis of the procedure of radioisotope therapy step by step. Results: We could increase each exclusive water-purifier tank's decay period from 84 days to 130 days through the improvement about following cause: (1) Improvement of conventional toilet stool for excessive water waste $\rightarrow$ Replacement of water saving style toilet stool (2) Prevention of unnecessary shower and wash (3) Stop the diuretics taking during hospitalization (4) Analysis of relationship between water intakes and residual dose of body (5) Education about outside toilet utilization before the administration (6) Changed each water-purifier tank's maximum level from85% to 90% Conclusion: The originality of our efforts are not only software but hardware performance improvements. Incidentally the side of software's are change of therapy procedures and protocols, the side of hardware's are replacement of water saving style toilet stool and change of each water-purifier tank's maximum level. Thus even if a long lapse of time, problem such as return to the former conditions may not happen. Besides, We expect that our trials become a new reasonable model in similar situation.

  • PDF