• Title/Summary/Keyword: radioactive waste disposal

Search Result 720, Processing Time 0.03 seconds

A Study on Excavation Responses of Underground Openings for Radioactive Waste Disposal (굴착으로 인한 방사성폐기물 지하처분공동의 거동변화)

  • 김선훈;김대홍;최규섭;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.174-179
    • /
    • 1992
  • In this paper a discussion is presented about excavation responses of underground openings for radioactive waste disposal. The effects of excavation methods, stress redistribution, thermal change, and backfill materials are reviewed. Comparisons of computational models for discontinuous reek masses and discussions on numerical simulation techniques for the excavation of underground openings are also described. Finally, the application of the CAD system to the planning, design and construction of underground openings fop radioactive waste disposal is introduced.

  • PDF

Numerical Modelling of Radionuclide Migration for the Underground Silo at Near-Field

  • Myunggoo Kang;Jaechul Ha
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.465-479
    • /
    • 2023
  • To ensure the safety of disposal facilities for radioactive waste, it is essential to quantitatively evaluate the performance of the waste disposal facilities by using safety assessment models. This paper addresses the development of the safety assessment model for the underground silo of Wolseong Low-and Immediate-Level Waste (LILW) disposal facility in Korea. As the simulated result, the nuclides diffused from the waste were kept inside the silo without the leakage of those while the integrity of the concrete is maintained. After the degradation of concrete, radionuclides migrate in the same direction as the groundwater flow by mainly advection mechanism. The release of radionuclides has a positive linear relationship with a half-life in the range of medium half-life. Additionally, the solidified waste form delays and reduces the migration of radionuclides through the interaction between the nuclides and the solidified medium. Herein, the phenomenon of this delay was implemented with the mass transfer coefficient of the flux node at numerical modeling. The solidification effects, which are delaying and reducing the leakage of nuclides, were maintained the integrity of the nuclides. This effect was decreased by increasing the half-life and the mass transfer coefficient of radionuclides.

Development of the Safety Case Program for the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설을 위한 Safety Case 종합프로그램의 개발)

  • Park, Jin Beak;Jeong, Jong Tae;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.335-344
    • /
    • 2014
  • The safety case program has been prepared for the development of the disposal facility of low- and intermediate-level radioactive waste in Korea. For the development of the radioactive waste disposal facility, this program can be applied for the safety demonstration of the facility and for the safety judgment of development step based on the international standards and domestic development environment. Systematic safety approach of this program includes the safety strategies such as optimization, robustness, demonstrability and defense-in-depth principle which are based on the safety principle and objectives. From the quality of assessment basis, safety arguments focused on the uncertainty management and the confidence building can assure the disposal safety during the step-wise safety assessment.

A Case Study on the Safety Assessment for Groundwater Pathway in a Near-Surface Radioactive Waste Disposal Facility

  • Park, Joo-Wan;Chang, Keun-Moo;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.232-241
    • /
    • 2002
  • A safety assessment is carried out for the near-surface radioactive waste disposal in the reference engineered vault facility. The analysis is mainly divided into two parts. One deals with the release and transport of radionuclide in the vault and unsaturated zone. The other deals with the transport of radionuclide in the saturated zone and radiological impacts to a human group under well drinking water scenario. The parameters for source-term, geosphere and biosphere models are mainly obtained from the site specific data. The results show that the annual effective doses are dominated by long lived, mobile radionuclides and their associated daughters. And it is found that the total effective dose for drinking water is far below the general criteria of regulatory limit for radioactive waste disposal facility.

The State-of-the Art of the Borehole Disposal Concept for High Level Radioactive Waste (고준위방사성폐기물의 시추공 처분 개념 연구 현황)

  • Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.

Considerations on Screening for the Input Data of the Biosphere Model in the Radioactive Waste Disposal Facility (방사성폐기물 처분시설에서 생태계 모델의 입력데이터 선정에 대한 고찰)

  • Mi-Seon Jeong;Dong-Kuk Park;Soo-Gin Kim;Kang-Il Jung
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.209-217
    • /
    • 2023
  • The biosphere has important function in the safety assessment of a radioactive waste disposal facility. A biosphere model in the safety assessment needs various input data that contain significantly inherent uncertainties. This paper reviews the effects of the input data on the radiological impact assessment from main radionuclides such as 14C and 99Tc in the biosphere model. In addition, it is confirmed that the safety criteria is met, when the conservative input data for the intake rate, soil to plant concentration ratio, and distribution coefficients of the radionuclides are applied and probabilistic analysis are conducted in the biosphere model. Nevertheless, it is required to generate site-specific input data for the confidence building and reduce excessive conservatism in the biosphere model.