• Title/Summary/Keyword: radioactive waste disposal

Search Result 720, Processing Time 0.026 seconds

Korean Reference Disposal System for High-level Radioactive Wastes

  • Choi Heui-Joo;Choi Jongwon;Lee Jong Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.225-235
    • /
    • 2005
  • This paper outlined the status of the development of Korean Reference Disposal (KRS­1) system for high-level radioactive wastes. The repository concept was based on the engineering barrier system which KAERI has developed through a long-term research and development program. The design requirements were prepared for the conceptual design of the repository. The amount of PWR and CANDU spent fuels were projected with the current nuclear power plan. The disposal rates of PWR and CANDU spent fuels were analyzed. The reference geologic characteristics including classification of fracture zones were set for the KRS. The disposal concepts and the layout of the repository were described.

  • PDF

Research on Rradiochemistry and Geochemistry at KIT-INE, Germany, in Support of the Nuclear Waste Disposal Safety Case

  • Altmaier, Marcus;Geckeis, Horst
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.567-568
    • /
    • 2018
  • Within this contribution, an overview of recent research performed in the radiochemistry division at KIT-INE is given. Examples are taken from R&D activities performed within the HGF NUSAFE programme, but also from studies performed within collaborations on the national and international level. It finally may contribute to increased interaction and exchange of KIT-INE with Korean research groups interested in nuclear waste disposal topics.

  • PDF

Local Community Development Model Building Study after Radioactive waste disposal facility Siting on GyeongJu (방사성 페기물 처분장 입지 후 지역 변화 모델 구축)

  • Oh, Young-Min;Yu, Jae-Kook
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.119-146
    • /
    • 2006
  • City of Gyeongju's referendum finally offered the long-waited low-level radioactive waste disposal site in November 2005. Gyeongju's positive decision was due to the various economic rewards and incentives the national government promised to the city. 300 million won for an accepting bonus, 8.5 billion won, annual revenue fro the entry quantity of waste into the city's disposal site, the location of the headquarter building of the Korean Hydro and Nuclear Power Co., and the accelerator research center. All of the above will affect the city's infrastructure and the citizens' economic and cultural lives. Population, land use, economic structure, environment and quality of life will be affected. Some will be very positive, and some will be positive. This research project will see the future of the city and forecast the demographic, economic, physical and environmental changes of the city via computer simulation's system dynamics technique. This kind of simulation will help City of Gyeongju's what to prepare for the future. The population forecasting of the year 2026 will be 289,069 with the waste disposal site, and 279,131 without the waste disposal site in Gyeongju. The waste disposal site and the relocation of the company headquarters and location of the accelerator research center will attract 9,938 individuals more with 511 manufacturing shops and 1944 service jobs. The population increase will bring 3,550 more houses constructed in the city. Land use will also be affected. More land will be developed. However, mad, water plant and waste water plant will not be expanded as much. The city's financial structure will be expanded, due to the increased revenues from the waste disposal site, and property tax revenues from the middle-class employees of the company, and the high-powered scientists and technologists from the accelerator research center. All in an, the future of the city will be brighter after operating the nuclear waste disposal site inside the city.

  • PDF

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils (불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개)

  • Lee, Changsoo;Yoon, Seok;Lee, Jaewon;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model (BBM) can describe not only swelling owing to decrease in effective stress, but also wetting-induced swelling due to decrease in suction. And the BBM can also consider increase in cohesion and apparent preconsolidation stress with suction, and decrease in the apparent preconsolidation stress with temperature. Therefore, the BBM is widely used all over the world to predict and to analyze coupled thermo-hydro-mechanical behavior of bentonite which is considered as buffer materials at the engineered barrier system in the high-level radioactive waste disposal system. However, the BBM is not well known in Korea, so this paper introduce the BBM to Korean rock engineers and geotechnical engineers. In this study, Modified Cam Clay (MCC) model is introduced before all, because the BBM was first developed as an extension of the MCC model to unsaturated soil conditions. Then, the thermo-elasto-plastic version of the BBM is described in detail.