• Title/Summary/Keyword: radioactive waste disposal

Search Result 720, Processing Time 0.017 seconds

The Study on the Way of Radioactive Waste Disposal in China

  • Keyan Teng;Hao Peng;Caixia Lv;Han Wu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.533-540
    • /
    • 2022
  • Because of the massive development of nuclear power plants in China in recent years, China is facing the challenge of radioactive waste disposal. China has established complete regulatory requirements for radioactive waste disposal, but it also has encountered problems and challenges in low-level radioactive waste disposal in terms of management, selection of disposal facility sites, and implementation of a site selection plan. Three low-level radioactive waste disposal facilities that have been operated in China are described, and their activity limits, locations, and capacities are also outlined. The connotations of "regional" and "centralized" disposal policies are discussed in light of the characteristics of the radioactive waste. The characteristics and advantages of the regional and centralized disposal policies are compared. It is concluded that the regional disposal policy adopted in 1992 can no longer meet the current disposal needs, and China should adopt a combination of the two disposal policies to solve the problem of radioactive waste disposal.

Parametric Study for Structural Reinforcement Methods of Disposal Container for NPP Decommissioning Radioactive Waste

  • Hyungoo Kang;Hoseog Dho;Jongmin Lim;Yeseul Cho;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.329-345
    • /
    • 2023
  • This paper described a method for analyzing the structural performance of a metal container used for disposing radioactive waste generated during the decommissioning of a nuclear power plant, and numerical analysis results of a method for reinforcing the container. The containers to be analyzed were those that can be used in near-surface and landfill disposal facilities scheduled to be operated at the Gyeongju radioactive waste disposal facility. Structural reinforcement of the container was performed by lattice reinforcement, column reinforcement, and bottom plate reinforcement. Accordingly, a total of 14 reinforcement cases were modeled. The external force causing damage to the container was set equivalent to the impact of a 9-m fall, accounting for the height of the vault at the near-surface disposal facility. The reinforcement methods with a high contribution to the structural performance of the container were concluded to be lattice and column reinforcements.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

WOLSONG LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL CENTER: PROGRESS AND CHALLENGES

  • Park, Jin-Beak;Jung, Hae-Ryong;Lee, Eun-Young;Kim, Chang-Lak;Kim, Geon-Young;Kim, Kyung-Su;Koh, Yong-Kwon;Park, Kyung-Woo;Cheong, Jae-Hak;Jeong, Chan-Woo;Choi, Jong-Soo;Kim, Kyung-Deok
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.477-492
    • /
    • 2009
  • In this paper, we discuss the experiences during the preparation of the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Center. These experiences have importance as a first implementation for the national LILW disposal facility in the Republic of Korea. As for the progress, it relates to the area of selected disposal site, the disposal site characteristics, waste characteristics of the disposal facility, safety assessment, and licensing process. During these experiences, we also discuss the necessity for new organization and change for a radioactive waste management system. Further effort for the safe management of radioactive waste needs to be pursued.

Study on Rainfall Infiltration Into Vault of Near-surface Disposal Facility Based on Various Disposal Scenarios

  • Kwon, Mijin;Kang, Hyungoo;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.503-515
    • /
    • 2021
  • In this study, rainfall infiltration in vault of the second near-surface disposal facility was evaluated on the basis of various disposal scenarios. A total of four different disposal scenarios were examined based on the locations of the radioactive waste containers. A numerical model was developed using the FEFLOW software and finite element method to simulate the behavior of infiltrated water in each disposal scenario. The effects of the disposal scenarios on the infiltrated water were evaluated by estimating the flux of the infiltrated water at the vault interfaces. For 300 years, the flux of infiltrated water flowing into the vault was estimated to be 1 mm/year or less for all scenario. The overall results suggest that when the engineered barriers are intact, the flux of infiltrated water cannot generate a sufficient pressure head to penetrate the vault. In addition, it is confirmed that the disposal scenarios have insignificant effects on the infiltrated water flowing into the vault.

Development of an Integrated Monitoring System for the Low and Intermediate Level Radioactive Waste Near-surface Disposal Facility (방사성폐기물 표층처분시설 통합 모니터링 시스템 개발)

  • Se-Ho Choi;HyunGoo Kang;MiJin Kwon;Jae-Chul Ha
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In this study, the function and purpose of the disposal cover, which is an engineering barrier installed to isolate the disposal vault of the near-surface disposal facility for radioactive waste from natural/man-made intrusion, and the design details of the demonstration facility for performance verification were described. The Demonstration facility was designed in a partially divided form to secure the efficiency of measurement while being the same as the actual size of the surface disposal facility to be built in the Intermediate & low-level radioactive waste disposal site of the Korea Radioactive Waste Agency (KORAD). The instruments used for measurement consist of a multi-point thermometer, FDR (Frequency Domain Reflectometry) sensor, inclinometer, acoustic sensor, flow meter, and meteorological observer. It is used as input data for the monitoring system. The 3D monitoring system was composed of 5 layers using the e-government standard framework, and was developed based on 4 components: screen, control module, service module, and DBIO(DataBase Input Output) module, and connected them to system operation. The monitoring system can provide real-time information on physical changes in the demonstration facility through the collection, analysis, storage, and visualization processes.

Calcium Sulfo Aluminate (CSA) Cement from Coal Ash Utilized as Barriers for Radioactive Waste Disposal

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • In this paper, we reviewed briefly about the barrier materials for the radioactive waste disposal. The primary concept of the radioactive waste disposal is safety. The goal of the radioactive waste management is to assure that the environment is not adversely affected and also public. There are a wide variety of materials are available for the radioactive waste disposal or storage. Among those coal fly ash is one of the significant materials are used as a barrier material. Here we reported, the Calcium sulfo aluminate (CSA) from coal fly ash is effectively suitable for the radioactive waste disposal. This is one of the ways of utilization of waste and manufactured the valuable materials for future indeeds.

Prediction of Radionuclide Inventory for Low- and Intermediate-Level Radioactive Waste by Considering Concentration Limit of Waste Package (처분방사능량제한치를 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 산정(안))

  • Jung, Kang Il;Kim, Min Seong;Jeong, Noh Gyeom;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.65-82
    • /
    • 2017
  • The result of a preliminary safety assessment that was completed by applying the radionuclide inventory calculated on the basis of available data from radioactive waste generation agencies suggested that many difficulties are to be expected with regard to disposal safety and operation. Based on the results of the preliminary safety assessment of the entire disposal system, in this paper, a unit package exceeding the safety goal is selected that occupies a large proportion of radionuclides in intermediate-level radioactive waste. We introduce restrictions on the amount of radioactivity in a way that excludes the high surface dose rate of the package. The radioactivity limit for disposal will be used as the baseline data for establishing the acceptance criteria and the disposal criteria for each disposal facility to meet the safety standards. It is necessary to draw up a comprehensive safety development plan for the Gyeongju waste disposal facility that will contribute to the construction of a Safety Case for the safety optimization of radioactive waste disposal facilities.