• Title/Summary/Keyword: radioactive Co

Search Result 564, Processing Time 0.034 seconds

ADVANCED SFR DESIGN CONCEPTS AND R&D ACTIVITIES

  • Hahn, Do-Hee;Chang, Jin-Wook;Kim, Young-In;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Ha, Kwi-Seok;Kim, Byung-Ho;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.427-446
    • /
    • 2009
  • In order to meet the increasing demand for electricity, Korea has to rely on nuclear energy due to its poor natural resources. In order for nuclear energy to be expanded in its utilization, issues with uranium supply and waste management issues have to be addressed. Fast reactor system is one of the most promising options for electricity generation with its efficient utilization of uranium resources and reduction of radioactive waste, thus contributing to sustainable development. The Korea Atomic Energy Research Institute (KAERI) has been performing R&Ds on Sodium-cooled Fast Reactors (SFRs) under the national nuclear R&D program. Based on the experiences gained from the development of KALIMER conceptual designs of a pool-type U-TRU-10%Zr metal fuel loaded reactor, KAERI is currently developing Advanced SFR design concepts that can better meet the Generation IV technology goals. This also includes developing, Advanced SFR technologies necessary for its commercialization and basic key technologies, aiming at the conceptual design of an Advanced SFR by 2011. KAERI is making R&D efforts to develop advanced design concepts including a passive decay heat removal system and a supercritical $CO_2$ Brayton cycle energy conversion system, as well as developing design methodologies, computational tools, and sodium technology. The long-term Advanced SFR development plan will be carried out toward the construction of an Advanced SFR demonstration plant by 2028.

Synthesis of DMDBTDMA and determination of radiolysis products by GC/MS (DMDBTDMA의 합성 및 방사선 분해산물의 GC/MS 분석)

  • Yang, Han-Beom;Lee, Eil-Hee;Park, Gyo-Beom
    • Analytical Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.403-411
    • /
    • 2008
  • Dimethyldibutyltetradecylmalonamide (DMDBTDMA) extractant was used in a solvent extraction process for a radioactive liquid waste treatment. For the study of radiolysis phenomena, DMDBTDMA was synthesized and the degradation compounds (n-methylbutylamine, tetradecane, 1-tetradecanol) in the DMDBTDMA extractant, irradiated with $^{60}Co$ gamma ray, were identified and determined as radiolysis products by a Fourier transform infrared (FT-IR), gas chromatograph/mass spectrometer (GC/MS) analysis and GC/MS with selected ion monitoring (SIM) mode. Retention behavior of n-methylbutylamine, n-dodecane, tetradecane and 1-tetradecanol in the total ion chromatogram with the standard materials and n-dodecane as the internal standard (ISTD) were 2.35 min., 8.83 min., 10.68 min. and 12.75 min., respectively. In the case of tetradecane, there was a linear relationship between the concentration of the tetradecane and the absorbed dose of the ${\gamma}$-ray irradiated DMDBTDMA.

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

  • Naoki Osawa;Seong-Yun Kim;Masahiko Kubota;Hao Wu;Sou Watanabe;Tatsuya Ito;Ryuji Nagaishi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.812-818
    • /
    • 2024
  • The volume and toxicity of radioactive waste can be decreased by separating the components of high-level liquid waste according to their properties. An impregnated silica-based adsorbent was prepared in this study by combining N,N,N',N',N",N"-hexa-n-octylnitrilotriacetamide (HONTA) extractant, N',N'-di-n-hexyl-thiodiglycolamide (Crea) extractant, and macroporous silica polymer composite particles (SiO2-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO2-P adsorbent was then assessed together with that of co-existing metal ions by batch-adsorption and chromatographic separation studies. From the batch-adsorption experiment results, (HONTA + Crea)/SiO2-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. Additionally, significant adsorption performance was observed toward Zr(IV) and Mo(VI). Compared with studies using the Crea extractant, the high adsorption performance of Zr(IV) and Mo(VI) is attributed to the HONTA extractant. As revealed from the chromatographic experiment results, most of Pd(II) was recovered from the feed solution using 0.2 M thiourea in 0.1 M HNO3. Additionally, the possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was observed using the (HONTA + Crea)/SiO2-P adsorbent.

Study on the Geophysical Research Applications Using Radioactive Isotopes (I) Study on the Structures in Strata by Using γ-γ Logging Apparatus (방사성동위원소의 지구물리학적 응용에 관한 연구 γ-γ 검층법에 의한 지층구조에 관한연구)

  • Lee, Hyun Duk;Rho, Seung Gy
    • Economic and Environmental Geology
    • /
    • v.9 no.3
    • /
    • pp.135-141
    • /
    • 1976
  • The gamma-gamma logging method appplying in geophysical research are presented in this paper_ The logging probe assembly was designed which permits changing the source-to-detector spacing while conditions of proceeding ${\gamma}-{\gamma}$ logging, which a collimated gamma ray source ($^{60}Co$, 0.5mCi and/or 2 mCi) is separated from the scintillation detector as shown in Fig. 2 and 3, size is 6.0 cm in diameter and 120.0 cm in long and the exposed parts are made of stainless steel pipe. The results is confirmed by the experiment performed mainly in granite rock where a slightly constant shape was obtained but sometimes was shown sharpness shape for the measured scattered gamma-ray intensity. Consequently, the experimental results are obtained an adequate intensity of scattered gamma-rays and favourable response to density change, and also very closely correspond to between core samples of the test boring and to used this method of ${\gamma}-{\gamma}$ logging in the test bore-hole of the strata.

  • PDF

Development of A Validation System For Automatic Radiopharmaceutical Synthesis Process Using Network Modeling (방사성의약품 합성 프로세스 검증을 위한 네트워크 모델링)

  • Lee, Cheol-Soo;Heo, Eun-Young;Kim, Jong-Min;Kim, Dong-Soo
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.187-195
    • /
    • 2011
  • The automatic radiopharmaceutical module consists of several 2-way valves, couple of syringes, gas supply unit, heating(cooling) unit and sensors to control the chemical reagents as well as to help the chemical reaction. In order to control the actuators of radiopharmaceutical module, the process is tabulated using spread sheet as like excel. Unlike the common program, a trivial error is too critical to allowed in the process because the error can lead to leak the radioactive reagent and to cause the synthesis equipment failure during synthesizing. Hence, the synthesis process has been validated using graphic simulation while the operator checks the whole process visually and undergoes trial and error. The verification of the synthesis process takes a long time and has a difficulty in finding the error. This study presents a methodology to verify the process algebraically while the radiopharmaceutical module is converted to the network model. The proposed method is validated using actual synthesis process.

Assessment of Radiation Dose from Radioactive Wedge Filters during High-Energy X-Ray Therapy

  • Back, Geum-mun;Park, Sung Ho;Kim, Tae-Hyung
    • Progress in Medical Physics
    • /
    • v.28 no.2
    • /
    • pp.45-48
    • /
    • 2017
  • This paper evaluated the amount of radiation generated by wedge filters during radiation therapy using a high-energy linear accelerator, and the dose to the worker during wedge replacement. After 10-MV photon beam was irradiated with wedge filter, the wedge was removed from the linear accelerator, and the dose rate and energy spectrum were measured. The initial measurement was approximately 1 uSv/h, and the radiation level was reduced to 0.3 uSv/h after 6 min. The effective half-life derived from the dose rate measurement was approximately 3.5 min, and the influence of AI-28 was about 53%. From the energy spectrum measurements, a peak of 1,799 keV was measured for AI-28, while the peak for Co-58 was not measured in the control room. The peaks for Au-106 and Cd-105 were found only measurement was done without wedge removement from the linear accelerator. The additional doses received by the radiation worker during wedge replacement were estimated to be 0.08-0.4 mSv per year.

Thermodynamic Calculations on the Chemical Behavior of SrO During Electrolytic Oxide Reduction

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.415-420
    • /
    • 2020
  • Strontium is known as a salt-soluble element during the electrolytic oxide reduction (EOR) process. The chemical behavior of SrO during EOR was investigated via thermodynamic calculations to provide quantitative data on the chemical status of Sr. To achieve this, thermodynamic calculations were conducted using HSC chemistry software for various EOR conditions. It was revealed that SrO reacts with LiCl salt to produce SrCl2, even in the presence of Li2O, and that the ratio of SrCl2 depends on the initial concentration of Li2O dissolved in LiCl. It was found that SrO reacts with Li to produce Sr during EOR and that the reduced Sr reacts with LiCl salt to produce SrCl2. As a result, the proportions of metallic forms were lower in Sr than in La and Nd under various EOR conditions. The thermodynamic calculations indicated that the three chemical forms of SrO, SrCl2, and Sr co-exist in the EOR system under an equilibrium with Li, Li2O, and LiCl.

Establishment of automated manufacturing system for high-purity [18F]Sodium fluoride: 3-year production experience

  • Jung, Soonjae;Kim, Jung Young;Han, Sang Jin;Seo, Youngbeom;Lee, Kyo Chul;Ryu, Young Hoon;Choi, Jae Yong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • A bone metastasis is an important factor for prognosis and treatment of breast or prostate cancer patients. [$^{18}F$]Sodium fluoride ([$^{18}F$]NaF) is a PET radiopharmaceutical that can detect bone metastasis. Conventional [$^{18}F$]NaF production process included radioactive metal impurities because the product was prepared by adding saline after beam irradiation to $[^{18}O]H_2O$. In this study, we apply the method of removing radionuclidic impurities. To meet the criteria prescribed by GMP in quality control, we designed the custom-made [$^{18}F$]NaF automatic module. The mean radiochemical yield was $82.1{\pm}4.4%$ (n = 32) productions for 3 years) and the total preparation time was 4 min. The final produced [$^{18}F$]NaF solution meets the USP criteria for quality control. Thus, this fully automated system is validated for clinical use.

Electrochemical Behaviors of Bi3+ Ions on Inert Tungsten or on Liquid Bi Pool in the Molten LiCl-KCl Eutectic

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Liquid Bi pool is a candidate electrode for an electrometallurgical process in the molten LiCl-KCl eutectic to treat the spent nuclear fuels from nuclear power plants. The electrochemical behavior of Bi3+ ions and the electrode reaction on liquid Bi pool were investigated with the cyclic voltammetry in an environment with or without BiCl3 in the molten LiCl-KCl eutectic. Experimental results showed that two redox reactions of Bi3+ on inert W electrode and the shift of cathodic peak potentials of Li+ and Bi3+ on liquid Bi pool electrode in molten LiCl-KCl eutectic. It is confirmed that the redox reaction of lithium with respect to the liquid Bi pool electrode would occur in a wide range of potentials in molten LiCl-KCl eutectic. The obtained data will be used to design the electrometallurgical process for treating actinide and lanthanide from the spent nuclear fuels and to understand the electrochemical reactions of actinide and lanthanide at liquid Bi pool electrode in the molten LiCl-KCl eutectic.

Code Requirements for Fuel Handling Equipment at Nuclear Power Plant

  • Chang, Sang-Gyoon;Kang, Tae-Kyo;Kim, Jong-Min;Jung, Jong-Pil
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.119-126
    • /
    • 2022
  • This study provides technical information about the nuclear fuel handling process, which consists of various subprocesses starting from new fuel receipt to spent fuel shipment at a nuclear power plant and the design requirements of fuel handling equipment. The fuel handling system is an integrated system of equipment, tools, and procedures that allow refueling, handling and storage of fuel assemblies, which comprise the fuel handling process. The understanding and reaffirming of detailed code requirements are requested for application to the design of the fuel handling and storage facility. We reviewed the design requirements of the fuel handling equipment for its adequate cooling, prevention of criticality, its operability and maintainability, and for the prevention of fuel damage and radiological release. Furthermore, we discussed additional technical issues related to upgrading the current code requirements based on the modification of the fuel handling equipment. The suggested information provided in this paper would be beneficial to enhance the safety and the reliability of the fuel handling equipment during the handling of new and spent fuel.