• Title/Summary/Keyword: radio unit

Search Result 252, Processing Time 0.026 seconds

A Study of MES for the Product Tracking Based on RFID (제품추적을 위한 RFID기반 제조실행시스템에 대한 연구)

  • Kim, Bong-Seok;Lee, Hong-Chul
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.159-164
    • /
    • 2006
  • MES(Manufacturing Execution System) is a control system which supports basic activities(scheduling, working process and qualify management, etc) to execute working on the shop floor. As especially MES is a system to decrease the gap between production planning and operating, it executes functions that make decision between management and labor using real-time data. MES for real-time information processing requires certain conditions such as data modeling of RFID, which has recently attracted attentions, and monitoring of each product unit from manufacture to sales. However, in the middle of processing the unit with a RFID tag, transponders(readers) can't often read the tag due to reader's malfunctions, intentional damages, loss and the circumstantial effects; for that reason, users are unable to confirm the location of the product unit. In this case, users cannot avoid tracing the path of units with uncertain clues. In this paper, we suggest that the unique MES based on RFID and Bayesian Network can immediately track the product unit, and show how to evaluate it.

  • PDF

MES for the Product Tracking using RFID and Bayesian network (RFID와 베이지안 네트워크를 이용한 제품추적 MES)

  • Kim, Bong-Seok;Lee, Hong-Chu;Cheon, Hyeon-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.211-221
    • /
    • 2006
  • Manufacturing Execution System(MES) immediately enables users to share the information of systems industrywide, efficiently manages synthetic information with data collection through treating the data in a fast way, and helps their decision-making. MES for real-time information processing requires certain conditions such as data modeling of RFID, which has recently attracted attentions, and monitoring of each product unit from manufacture to sales. However, in the middle of processing the unit with a RFID tag, transponders(readers) can't often read the tag due to reader's malfunctions, intentional damages, loss and the circumstantial effects; for that reason, users are unable to confirm the location of the product unit. In this case, users cannot avoid tracing the path of units with uncertain clues. In this paper we suggest that the unique MES based on RFID and Bayesian Network can immediately track the product unit, and show how to evaluate it.

  • PDF

EBG Resonator Antenna with a Stripline Type FSS Superstrate for PCS-band Base Station Antennas (스트립라인 형태의 주파수 선택적 표면 덮개층을 이용한 PCS대역 기지국용 EBG 공진기 안테나)

  • Yeo, Jun-Ho;Kim, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.15-27
    • /
    • 2008
  • In this paper, an EBG(Electromagnetic BandGap) resonator antenna with a stripline type FSS(Frequency Selective Surface) superstrate for PCS-band base station antennas is proposed. The characteristics of resonant frequency and -3dB bandwidth of a unit cell of a superstrate are first analyzed by varing several design parameters such as a strip width and a unit cell width in order to design an EBG resonator antenna satisfying the required antenna gain and bandwidth for PCS-band base station antennas. Among various unit cell shapes, strip dipole and stripline are considered and their characteristics are compared. It was found that a resonant length of the EBG resonator antenna becomes smaller when the stripline shape is used and the control of the bandwidth is also much easier. By using the unit cell simulation results, planar and cylindrical EBG resonator antennas at PCS-band are designed.

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Measurement Level Experimental Test Result of GNSS/IMU Sensors in Commercial Smartphones

  • Lee, Subin;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.273-284
    • /
    • 2020
  • The performance of Global Navigation Satellite System (GNSS) chipset and Inertial Measurement Unit (IMU) sensors embedded in smartphones for location-based services (LBS) is limited due to the economic reasons for their mass production. Therefore, it is necessary to efficiently process the output data of the smartphone's embedded sensors in order to derive the optimum navigation values and, as a previous step, output performance of smartphone embedded sensors needs to be verified. This paper analyzes the navigation performance of such devices by processing the raw measurements data output from smartphones. For this, up-to-dated versions of smartphones provided by Samsung (Galaxy s10e) and Xiaomi (Mi 8) are used in the test experiment to compare their performances and characteristics. The GNSS and IMU data are extracted and saved by using an open market application software (Geo++ RINEX Logger & Mobile MATLAB), and then analyzed in post-processing manner. For GNSS chipset, data is extracted from static environments and verified the position, Carrier-to-Noise (C/N0), Radio Frequency Interference (RFI) performance. For IMU sensor, the validity of navigation and various location-based-services is predicted by extracting, storing and analyzing data in static and dynamic environments.

Accurate Characterization of T/R Modules with Consideration of Amplitude/Phase Cross Effect in AESA Antenna Unit

  • Ahn, Chang-Soo;Chon, Sang-Mi;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.417-424
    • /
    • 2016
  • In this paper, an accurate characterization of a fabricated X-band transmit/receive module is described with the process of generating control data to correct amplitude and phase deviations in an active electronically scanned array antenna unit. In the characterization, quantization errors (from both a digitally controlled attenuator and a phase shifter) are considered using not theoretical values (due to discrete sets of amplitude and phase states) but measured values (of which implementation errors are a part). By using the presented procedure for the characterization, each initial control bit of both the attenuator and the phase shifter is closest to the required value for each array element position. In addition, each compensated control bit for the parasitic cross effect between amplitude and phase control is decided using the same procedure. Reduction of the peak sidelobe level of an array antenna is presented as an example to validate the proposed procedure.

Development of the Base Station Controller and Manager in the CDMA Mobile System

  • Ahn, Jee-Hwan;Shin, Dong-Jin;Cho, Cheol-Hye
    • ETRI Journal
    • /
    • v.19 no.3
    • /
    • pp.141-168
    • /
    • 1997
  • The base station (BS) in the CDMA Mobile System (CMS) connects calls through the radio interface and is designed to provide mobile subscribers with high quality service in spite of mobile subscribers motions. The BS consists of multiple base station transceiver subsystems (BTSs), a base station controller (BSC) and a base station manager (BSM). This paper is concerned with the BSC and the BSM. The BSC is located between the BTSs and the mobile switching center (MSC) connected with the public network, and to mobile subscribers via the BTSs. The BSM provides operator-interfaces per the BS and takes responsibility of operation and maintenance (OAM) of the BS. Design of the BSC is based on two module types: functional module and unit module. The functional module is used to support new services easily and the unit module to increase the system capacity economically. Both modular types are easily achieved by inserting the corresponding modules to the system. Particularly, in order to efficiently support the soft handover which is one of CDMA superior advantages, the BSC adopts a large high-speed Packet switch connecting up to 512 BTSs, and thus mobile subscribers can be provided with soft handover in high probability. The BSM is based on a commercial workstation to support OAM functions efficiently and guarantee high reliability of the functions. The BSM uses graphical user interface (GUI) for efficient OAM functions of the BS.

  • PDF

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • Kim, Dong-Su;Kim, Chung-Hwan;Kim, Myeong-Seop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

Wireless links for global positioning system receivers

  • Casciati, Fabio;Wu, Lijun
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • Given an object, its positioning in the space is a main concern in structural monitoring and a required feedback in structural health monitoring, structural control and robotics. In addition, to make the sensor unit wireless is a crucial issue for advanced applications. This paper deals with the exploitation of wireless transmission technology to long-term monitoring GPS (Global Positioning System) receivers - like the Leica GMX 902 and the Leica GRX 1200-pro. These GPS receivers consist of five parts: antenna, receiver, user client computer, interface and power supply. The antenna is mounted on the object to be monitored and is connected with the receiver by a coaxial-cable through which the radio frequency signals are transmitted. The receiver unit acquires, tracks and demodulates the satellite signals and provides, through an interface which in this paper is made wireless, the resulting GPS raw data to the user client computer for being further processed by a suitable positioning algorithm. The power supply reaches the computer by a wired link, while the other modules rely on batteries re-charged by power harvesting devices. Two wireless transmission systems, the 24XStream and the CC1110, are applied to replace the cable transmission between the receiver and the user client computer which up to now was the only market offer. To verify the performance and the reliability of this wireless transmission system, some experiments are conducted. The results show a successful cable replacement.

Optimization of the Vertical Localization Scale for GPS-RO Data Assimilation within KIAPS-LETKF System (KIAPS 앙상블 자료동화 시스템을 이용한 GPS 차폐자료 연직 국지화 규모 최적화)

  • Jo, Youngsoon;Kang, Ji-Sun;Kwon, Hataek
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.529-541
    • /
    • 2015
  • Korea Institute of Atmospheric Prediction System (KIAPS) has been developing a global numerial prediction model and data assimilation system. We has implemented LETKF (Local Ensemble Transform Kalman Filter, Hunt et al., 2007) data assimilation system to NCAR CAM-SE (National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core, Dennis et al., 2012) that has cubed-sphere grid, known as the same grid system of KIAPS Integrated Model (KIM) now developing. In this study, we have assimilated Global Positioning System Radio Occultation (GPS-RO) bending angle measurements in addition to conventional data within ensemble-based data assimilation system. Before assimilating bending angle data, we performed a vertical unit conversion. The information of vertical localization for GPS-RO data is given by the unit of meter, but the vertical localization method in the LETKF system is based on pressure unit. Therefore, with a clever conversion of the vertical information, we have conducted experiments to search for the best vertical localization scale on GPS-RO data under the Observing System Simulation Experiments (OSSEs). As a result, we found the optimal setting of vertical localization for the GPS-RO bending angle data assimilation. We plan to apply the selected localization strategy to the LETKF system implemented to KIM which is expected to give better analysis of GPS-RO data assimilation due to much higher model top.