• Title/Summary/Keyword: radio sources

Search Result 284, Processing Time 0.031 seconds

Radio Variability and Random Walk Noise Properties of Four blazars

  • Park, Jong-Ho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2014
  • We present the results of a time series analysis of the long-term radio lightcurves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We exploit the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program which provides densely sampled lightcurves spanning 32 years in time in three frequency bands located at 4.8, 8, and 14.5,GHz. Our sources show mostly flat or inverted (spectral indices -0.5 < alpha < 0) spectra, in agreement with optically thick emission. All lightcurves show strong variability on all time scales. Analyzing the time lags between the lightcurves from different frequency bands, we find that we can distinguish high-peaking flares and low-peaking flares in accord with the classification of Valtaoja et al. (1992). The periodograms (temporal power spectra) of the observed lightcurves are consistent with random-walk powerlaw noise without any indication of (quasi-)periodic variability. The fact that all four sources studied are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars.

  • PDF

VSOP: SPACE VLBI PROJECT

  • MAKOTO INOUE
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.419-420
    • /
    • 1996
  • The VLBI Space Observatory Program (VSOP) is a worldwide project of one radio telescope in space with many ground radio telescopes. The concerted space VLBI network enables us to reveal high resolution and high quality images of radio sources. The space radio telescope is anticipated to be launched in January/February 1997, and collaborative observations have been coordinated. The basic parameters of the system and present status are given.

  • PDF

A pilot study on the radio flux variability of dwarf galaxies

  • Hwang, Ji-Hye;Woo, Jon-Hak;Jung, Taehyun;Chung, Aeree;Trippe, Sascha;Baek, Junhyun;Lee, Taeseok;Park, Dawoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2014
  • The black hole occupation fraction in dwarf galaxies can provide an important clue for understanding the black hole seed formation. As a pilot feasibility study, we performed a KVN radio monitoring campaign over 8 months for 4 dwarf galaxies. Two galaxies (IC10 and NGC1569) are detected at 22 GHz, respectively with 39 mJy, 83 mJy. The measured flux (rms) variability is 13% and 8%, respectively for IC10 and NGC1569, while the mean flux uncertainty is 25% and 12%. Thus, the detection of the radio flux variability is at best marginal. Detecting flux variability of faint sources (i.e., 22 GHz flux < 200 mJy) seems challenging with the KVN single dishes. Combining with the 1.4 GHz flux measurements from the NVSS, we find that these two galaxies have a steep spectrum, supporting that the radio sources are AGNs. Instead of a monitoring, single-epoch multi-band observations can be effective for identifying radio AGNs by providing the constraint of the radio continuum slope.

  • PDF

Environment of radio-sources over 8 decades of radio luminosity

  • Karouzos, Marios;Im, Myungshin;Kim, Jae Woo;Lee, Seong Kook;Chapman, Scott
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2014
  • Although the link between activity in the nuclei of galaxy and galactic mergers has been under scrutiny for several years, it is still unclear to what extent and for which populations of active galaxies merger-triggered activity is relevant. The environment of AGN allows an indirect probe of the past merger history and future merger probability of these systems, suffering less from sensitivity issues while extending to higher redshifts, compared to traditional morphological studies of AGN host galaxies. Here we present results from our investigation of the environment of radio selected sources out to redshift z=2. We employ the first data release J-band catalog from the new near-IR Infrared Medium-Deep Survey (IMS) and 1.4 GHz radio data from the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey and a deep dedicated VLA survey of the VIMOS field, covering a combined total of ~20 sq. degrees. Given the flux limit of the combined radio catalog (0.1 mJy), we probe a radio luminosity range of 10^36-10^44 erg/s. Using the second and fifth closest neighbor density parameters, we test whether active galaxies inhabit denser environments and study these overdensities in terms of both distance to the AGN and its luminosity. We find evidence for a sub-population of radio-selected AGN that resides in significantly overdense environments at small scales, although we do not find significant overdensities for the bulk of our sample. We do not recover any dependence between the AGN radio-luminosity and overdensities. We show that radio-AGN inhabiting the most underdense environments in the field have vigorous ongoing star formation. We interpret these results in terms of the triggering and fuelling mechanism of radio-AGN.

  • PDF

Radio-loud AGN in the AKARI-NEP field

  • Karouzos, M.;Im, M.;Takagi, T.;Matsuhara, H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2012
  • A unique ensemble of datasets is available for the AKARI North Ecliptic Pole (NEP) field, having being observed virtually across the whole electromagnetic spectrum. We have undertaken a study of radio sources in the NEP field and in particular radio-loud AGN. We present preliminary results concerning the identification of these radio-loud AGN using a host of different selection criteria. We aim to study the host galaxies of these systems within the current framework of galaxy evolution and the role that AGN play in it.

  • PDF

Analysis of Performance Degradation of Antenna due to Radio Frequency Interference (RFI에 기인한 안테나 성능 저하 분석)

  • Lee, Hosang;Kim, Kwangho;Youn, Jinsung;Lee, Daehee;Hwang, Chanseok;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.651-658
    • /
    • 2017
  • This paper proposes an analysis method of performance degradation of antenna due to radio frequency interference between an antenna and adjacent noise sources using active scattering parameters. The radio frequency interference can be analyzed by the measured or simulated scattering parameters and by excited noise sources in the circuit as well. In this paper, a planar inverted-F antenna and a noise source are designed and fabricated to analyze radio frequency interference between the planar inverted-F antenna and noise source. The proposed analysis method uses active scattering parameters, of which verification is experimentally verified, and in simulation as well.

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

The long-term centimeter variability of active galactic nuclei: A new relation between variability timescale and black hole mass

  • Park, Jongho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.36.2-37
    • /
    • 2016
  • We study the long-term radio variability of 43 radio bright AGNs by exploiting the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program. The UMRAO database provides high quality lightcurves spanning 25 - 32 years in time at three observing frequencies, 4.8, 8, and 14.5 GHz. We model the periodograms (temporal power spectra) of the observed lightcurves as simple power-law noise (red noise, spectral power $P(f){\propto}f^{-{\beta}}$ using Monte Carlo simulations, taking into account windowing effects (red-noise leak, aliasing). The power spectra of 39 (out of 43) sources are in good agreement with the models, yielding a range in power spectral index (${\beta}$) from ${\approx}1$ to ${\approx}3$. We find a strong anti-correlation between ${\beta}$ and the fractal dimension of the lightcurves, which provides an independent check of the quality of our modelling of power spectra. We fit a Gaussian function to each flare in a given lightcurve to obtain the flare duration. We discover a correlation between ${\beta}$ and the median duration of the flares. We use the derivative of a lightcurve to obtain a characteristic variability timescale which does not depend on the assumed functional form of the flares, incomplete fitting, and so on. We find that, once the effects of relativistic Doppler boosting on the observed timescales are corrected, the variability timescales of our sources are proportional to the black hole mass to the power of ${\alpha}=1.70{\pm}0.49$. We see an indication for AGNs in different regimes of accretion rate, flat spectrum radio quasars and BL Lac objects, having different scaling relations with ${\alpha}{\approx}1$ and ${\approx}2$, respectively. We find that modelling the periodograms of four of our sources requires the assumption of broken powerlaw spectra. From simulating lightcurves as superpositions of exponential flares we conclude that strong overlap of flares leads to featureless simple power-law periodograms of AGNs at radio wavelengths in most cases (The paper is about to be submitted to ApJ).

  • PDF

Flux Monitoring of Intraday Variable Sources with KVN Yonsei Radio Telescope

  • Lee, Jee-Won;Sohn, Bong-Won;Byun, Do-Young;Lee, Jeong-Ae;Park, Pulun;Kim, Min-Joong;Kim, Sung-Soo S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.34.3-34.3
    • /
    • 2010
  • We present the results of flux monitoring of BL Lac object 0716+71 and 0954+65 at 22GHz and 43GHz. Both of the flat spectrum radio sources are known as Intraday variables (IDVs) which are characterized by fast flux variation on time scales of a day or less. In general, the IDV phenomenon is interpreted as the effect of refractive scintillation in the interstellar medium or the evidence of source intrinsic flux variation. The observations were made simultaneously at 22GHz and 43GHz with KVN Yonsei 21m radio telescope.

  • PDF

DUST-OBSCURED RADIO AGNS FROM THE WISE SURVEY

  • Kim, Minjin;Lonsdale, Carol J.;Lacy, Mark;Kimball, Amy;Condon, Jim
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.289-290
    • /
    • 2012
  • Feedback from accreting BH (AGN) is thought to be responsible for the co-evolution of BHs and galaxies. It is likely to be prominent in the most luminous dust-obscured quasars, particularly those containing radio sources too luminous to be powered by starbursts. In order to investigate the feedback mechanism in detail, we select a unique sample containing ~ 200 of the most luminous obscured QSOs by cross-matching the WISE catalog with the FIRST and NVSS radio surveys. We present overall statistics for the observed range of colors and radio/mid-IR flux density ratio. We also present our efforts to understand the physical and evolutionary nature of these extreme feedback candidates using various telescopes such as Magellan, SOAR, Herschel, and ALMA.