• Title/Summary/Keyword: radio resource sharing

Search Result 47, Processing Time 0.024 seconds

The Interference Measurement Analysis between 3.412 GHz Band Broadcasting System and UWB Wireless Communication System

  • Song Hong-Jong;Kim Dong-Ku
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Ultra wideband(UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as Broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a orthogonal frequency division Multiplex UWB source and an impulse radio UWB source, to a Broadcasting transmission system. The receive power degradations of broadcasting system are presented. From these experimental results, we show that in all practical cases UWB system can coexist 35 m distance in-band broadcasting network.

Spectrum Policy and Strategic Plan in the United States of America (미국의 전파 정책 및 전략 계획)

  • Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.853-860
    • /
    • 2012
  • In this paper, We shed light on radio spectrum policy and strategic planning of the United States of America and draw some conclusions. First of all, as the radio technology evolves with time, paradigm shift from command & control to market-based approach and spectrum commons is reviewed. Strategic spectrum planning of USA is also analyzed and some suggestions are drawn. In particular, USA plan for developing dynamic spectrum access(DSA) technologies and implementation of the test-bed for the DSA spectrum sharing is discussed, which improves the spectral utilization. Finally We deal with spectrum re-farming issue for mobile broadband and implicative points based on the National Broadband Plan.

Resource and Power Allocation Method for Device-to-Device Communications in a Multicell Network (다중 셀 네트워크에서 단말 간 직접 통신을 위한 자원 및 전력 할당 기법)

  • Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1986-1993
    • /
    • 2015
  • We investigate the optimal resource and power allocation for device-to-device (D2D) communications in a multicell environment. When D2D links reuse the cellular radio resources, each D2D user will interfere with a cellular link and other D2D links, in its own cell as well as in adjacent cells. Under such situation, we propose a coordinated resource allocation scheme that can handle the intercell interferences as well as the intracell interference. For a given resource allocation, we also formulate a power optimization problem and present an algorithm for finding the optimal solution. The resource and power allocation algorithms are designed to maximize the achievable rate of the D2D link, while limiting the generated interference to the cellular link. The performance of the proposed algorithms is evaluated through simulations in a multicell environment. Numerical results are presented to verify the coordination gain in the resource and power allocation.

Improvement of Computational Complexity of Device-to-Device (D2D) Resource Allocation Algorithm in LTE-Advanced Networks (LTE-Advanced 환경에서 D2D 자원 할당 알고리즘의 계산 복잡도 개선)

  • Lee, Han Na;Kim, Hyang-Mi;Kim, SangKyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.762-768
    • /
    • 2015
  • D2D communication as an underlaying LTE-Advanced network has proven to be efficient in improving the network performance and decreasing the traffic load of eNodeB(enhanced NodeB). However large amount of interference can be caused by sharing the resources between the cellular users and D2D pairs. So, a resource allocation for D2D communication to coordinate the interference is necessary. Related works for resource allocation that D2D can reuse the resources of more than one cellular user with best CQI(Channel Quality Indicator) have been proposed. D2D communications may still cause interference to the primary cellular network when radio resource are shared between them. To avoid this problem, we propose a radio resource allocation algorithm with low computational complexity for D2D communication in OFDM-based wireless cellular networks. Unlike the previous works, the proposed algorithm utilizes unused ones of the whole resource. The unused resource allocate to on D2D pair can be shared only with other D2D pairs. In other words, if the distance between the D2D pairs is sufficient, we allowed more than two D2D pairs to share the same resources. The simulation results have proven that the proposed algorithm has up to 11 times lower computational complexity than the compared one according to the number of D2D.

A Device-to-device Sharing-Resource Allocation Scheme based on Adaptive Group-wise Subset Reuse in OFDMA Cellular Network (OFDMA 셀룰러 네트워크에서 적응적인 Group-wise Subset Reuse 기반 Device-to-device 공유 자원 할당 기법)

  • Kim, Ji-Eun;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.72-79
    • /
    • 2010
  • Device-to-device(D2D) links which share resources in a cellular network present a challenge in radio resource management due to the potentially severe interference they may cause to the cellular network. In this paper, a resource allocation scheme based on subset reuse methods is proposed to minimize the interference from the D2D links. We consider an adaptive group-wise subset reuse method to enhance the efficiency of frequency resource allocation for cellular and D2D links. A power optimization scheme is also proposed for D2D links if cellular links are interfered by adjacent D2D transmissions. The computer simulation results show that performance gain is obtained in link SINR, and total cell throughput increases as nearby traffic becomes more dominant.

Robust Wireless Sensor and Actuator Network for Critical Control System (크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1477-1483
    • /
    • 2020
  • The stability guarantee of wireless network based control systems is still challenging due to the lossy links and node failures. This paper proposes a hierarchical cluster-based network protocol called robust wireless sensor and actuator network (R-WSAN) by combining time, channel, and space resource diversity. R-WSAN includes a scheduling algorithm to support the network resource allocation and a control task sharing scheme to maintain the control stability of multiple plants. R-WSAN was implemented on a real test-bed using Zolertia RE-Mote embedded hardware platform running the Contiki-NG operating system. Our experimental results demonstrate that R-WSAN provides highly reliable and robust performance against lossy links and node failures. Furthermore, the proposed scheduling algorithm and the task sharing scheme meet the stability requirement of control systems, even if the controller fails to support the control task.

Experimental Interference Studies Between WCDMA and UWB System

  • Kim, Myung-Jong;Kim, Jae-Young;Kang, Young-Jin;Hong, Ic-Pyo
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.187-190
    • /
    • 2005
  • Ultra wideband (UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geolocation, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional mobile wireless systems sharing the frequency bands such as WCDMA system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a direct-sequence spread-spectrum UWB source and an impulse radio UWB source, to a WCDMA digital transmission system. The average frame error rate degradations are presented. From these experimental results, we show that in all practical cases UWB system can coexist with WCDMA terminal without causing any dangerous interference.

  • PDF

Performance of Cognitive Radio Systems Based on Multiple Orthogonal Sequences (다중 직교 시퀀스를 이용한 인지 무선 시스템의 성능)

  • Lee, Kyung-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.976-984
    • /
    • 2012
  • Ad hoc networks can be used under difficult conditions, where it is difficult to construct infrastructures, such as shadowing areas, disaster areas, war area, and so on. In order to support to considerable and various wireless services, more spectrum resources are needed. However, efficient utilization of the frequency resource is difficult because of spectrum scarcity and the conventional frequency regulation. Ad-hoc networks employing cognitive radio(CR) system that guarantee high spectrum utilization provide effective way to increase the network capacity. However, there is a problem that all CR user do not fairly use the primary user's idle bandwidth which has been sensed. In this paper, to solve this problem, we propose the spectrum sharing algorithm which uses the multiple orthogonal sequences based on the code division multiple access(CDMA). From the proposed algorithm, it is expected that system performance of CR based ad-hoc network is improved significantly and it can be applied to the implementation of CR based ad-hoc network system.

A Novel Frequency Planning and Power Control Scheme for Device-to-Device Communication in OFDMA-TDD Based Cellular Networks Using Soft Frequency Reuse (OFDMA-TDD 기반 셀룰러 시스템에서 디바이스간 직접통신을 위한 SFR 자원할당 및 전송 전력조절 방법)

  • Kim, Tae-Sub;Lee, Sang-Joon;Lim, Chi-Hun;Ryu, Seungwan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.885-894
    • /
    • 2012
  • Currently, Demand of data traffic has rapidly increased by popular of smart device. It is very difficult to accommodate demand of data traffic by limited resource of base station (BS). To solve this problem, method has proposed that the Device-to-Device (D2D) reduce frequency overload of the BS and all of the user equipment (UE) inside the BS and neighbor BS don't allow communicating directly to BS. However, in LTE-Advance system cellular link and sharing radio resources of D2D link, the strong interference of the cellular network is still high. So we need to eliminate or mitigate the interference. In this paper, we use the transmission power control method and Soft Frequency Reuse (SFR) resource allocation method to mitigate the interference of the cellular link and D2D link. Simulation results show that the proposed scheme has high performance in terms of Signal to Noise Ratio (SINR) and system average throughput.

An Effective Frequency Sharing Method using Spectrum Etiquette and Genetic Algorithm for the Coexistence of WRAN and WLAN in TV White Space (TVWS에서 스펙트럼 에티켓 및 GA를 사용한 WRAN과 WLAN의 효율적 주파수 공유기법)

  • Jeong, Won-Sik;Jang, Sung-Jeen;Yong, Seulbaro;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.83-94
    • /
    • 2012
  • Various wireless communication devices or network such as WRAN and WLAN will coexist in the TVWS(TV White Space). Because of this coexistence, the wireless devices which use the TVWS have to avoid interfering to not only licensed TV receiver and wireless microphone but also homogeneous or heterogeneous TVBD(TV Band Device)s. In this paper, we propose two frequency sharing methods for the coexistence of WLAN and WRAN in terms of interference reduction and throughput enhancement in both homogeneous and heterogeneous networks. One is the WRAN spectrum etiquette to provide more wide bandwidth for WLAN users and the other is the WLAN frequency selection methods to improve the throughput performance. The simulation results have confirmed the throughput improvement of the proposed methods. Moreover, the proposed methods is also applicable to improve the throughput performance and reduce interference of similar systems working in a cognitive manner.