• Title/Summary/Keyword: radio/high frequency

Search Result 836, Processing Time 0.03 seconds

Implementation of Low Loss Radome with Hexa mesh for Ku-Band

  • Seo, Kang;JeongJin, Kang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.555-560
    • /
    • 2022
  • In this study, the insertion loss and phase delay according to the multi-layer structure radome parameters were analyzed using the boundary value solution approach, and the multi-layer structure and hexa mesh structures with low-loss electrical characteristics for the Ku-band transmission/reception frequency of 10.7 ~ 14.5 GHz were designed and manufactured. A hexa mesh was applied to minimize radio wave transmission and scattering, which lowered the transmittance refractive index according to the radio incident angle and minimized dielectric loss through high-density foam. Similar to the simulation result, the transmission loss obtained the gain in a specific receiving frequency band, and in the transmission frequency band, an excellent low loss characteristic was obtained with an insertion loss of 0.8dB or less. The results of this study can be used in radio transmission radomes of low-weight, low-cost end-system protection devices.

A HIGH FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

  • Cho, Kyungsuk;Gopalswamy, Nat;Kwon, Ryunyoung;Kim, Roksoon;Yashiro, Seiji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • We examine the relationship between a type II radio burst that started from an unusually high frequency of 425 MHz (fundamental component) and an associated white-light coronal mass ejection on 2011 February 13. The radio burst had a drift rate of 2.5 MHz/sec, indicating a relatively high shock speed. From SDO AIA observations we find that a loop-like erupting front sweeps across high density coronal loops near the start time of the burst (17:34:15 UT). We find fragmented structures of the type II burst, which indicates the signature of the shock propagating through the multiple loops. The deduced distance of shock formation (0.06 Rs) from flare center and speed of the shock (1100 km $s^{-1}$) using the measured density from AIA/SDO observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km $s^{-1}$) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst could be onset even in the low corona (41 Mm or 0.06 Rs, above the solar surface) if a fast CME shock passes through the high density loops.

  • PDF

THE FREQUENCY AGILE SOLAR RADIOTELESCOPE

  • GARY DALE E.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.135-143
    • /
    • 2003
  • Solar radio astronomy is about to undergo a revolution with the advent of a new radio synthesis array, the Frequency Agile Solar Radiotelescope (FASR). The array will consist of more than 100 antennas (5000 baselines), and will be designed to meet the special challenges of solar imaging. It will produce high-quality images at hundreds of frequencies in the range 20 MHz-24 GHz. We briefly describe the plans for the instrument, and then concentrate on the range of science that is expected to be addressed, using current state-of-the-art solar radio observations and modeling to illustrate FASR performance. We end with an assessment of the current status of the instrument, and plans for future.

Operation of the Radio Occultation Mission in KOMPSAT-5

  • Choi, Man-Soo;Lee, Woo-Kyoung;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2010
  • Korea multi-purpose satellite-5 (KOMPSAT-5) is a low earth orbit (LEO) satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD) requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD) system which consists of a space-borne dual frequency global positioning system (GPS) receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

An Evaluation on Electrical Shock and Ignition Hazards in Metallic Structures Acting Receiving Antennas of Radio-frequency Radiation (고주파 방사에 대한 수신 안테나로 작용하는 구조물에서의 전격 및 점화 위험성 평가)

  • Choi, Sang-Won;Lee, Hyung-Soo;Lee, Gwan-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2280-2283
    • /
    • 1999
  • Close to high power radio/radar transmitters, there is a possibility that electrical sparks may occur at discontinuities in metallic structures. If these structures are in an area where flammable mixtures are present, there is a danger that fire or explosion may happen by these sparks. Voltage may be induced on these metallic structures by the radio-frequency transmitter. In this case, a person who comes into contact with these structure may be undergone a severe electrical shock. In this paper, assessment of the these hazards was investigated through experimental and evaluation for actual tower cranes near AM radio transmitters.

  • PDF

Radio Variability and Random Walk Noise Properties of Four blazars

  • Park, Jong-Ho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2014
  • We present the results of a time series analysis of the long-term radio lightcurves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We exploit the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program which provides densely sampled lightcurves spanning 32 years in time in three frequency bands located at 4.8, 8, and 14.5,GHz. Our sources show mostly flat or inverted (spectral indices -0.5 < alpha < 0) spectra, in agreement with optically thick emission. All lightcurves show strong variability on all time scales. Analyzing the time lags between the lightcurves from different frequency bands, we find that we can distinguish high-peaking flares and low-peaking flares in accord with the classification of Valtaoja et al. (1992). The periodograms (temporal power spectra) of the observed lightcurves are consistent with random-walk powerlaw noise without any indication of (quasi-)periodic variability. The fact that all four sources studied are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars.

  • PDF

A frequency Domain based High Resolution Positioning Method using Low Rate ADC in LR-WPAN (LR-WPAN에서 저속 ADC를 이용한 주파수 영역상의 고해상 무선 측위 기법)

  • Lee, Won-Cheol;Park, Woon-Yong;Hong, Yun-Gi;Choi, Sung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.145-152
    • /
    • 2009
  • Ultra-wideband communication systems for impulse radio have merits that are possible for either high resolution ranging system or radio determination. Conventionally, in order to accomplish these functions, the rapid analog to digital convertor (ADC) is necessary to apply radio determination system operating in time domain. However, considering that low rate - wireless personal area network (LR-WPAN) aims to low-cost hardware implementation, the expensive ADC converting GHz sampling per second is not appropriate. So, this paper introduces the high resolution ranging system operating in frequency domain with using low sampling rate ADC, and a new non-coherent ranging scheme utilizing analog Frequency Modulation (FM) mode for the frequency domain transformation. To verify the superiority of the proposed ranging algorithm working in frequency domain, the suggested IEEE 802.15.4a TG channel model is used to exploit affirmative features of the proposed algorithm with conducting the simulation results.

Experimental Measurement System for 3-6 GHz Microwave Breast Tomography

  • Son, Seong-Ho;Kim, Hyuk-Je;Lee, Kwang-Jae;Kim, Jang-Yeol;Lee, Joon-Moon;Jeon, Soon-Ik;Choi, Hyung-Do
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • This paper presents an experimental measurement system for 3-6 GHz microwave tomography (MT) of the breast. The measurement system is constructed as a minimal test bed to verify key components such as the sensing antennas, radio frequency (RF) transceiver, sensing mechanism, and image reconstruction method for our advanced MT system detecting breast cancer at an early stage. The test bed has eight RF channels operating at 3 to 6 GHz for high spatial resolution and a two-axis scanning mechanism for three-dimensional measurement. The measurement results from the test bed are shown and discussed.

Synchronization for IR-UWB System Using a Switching Phase Detector-Based Impulse Phase-Locked Loop

  • Zheng, Lin;Liu, Zhenghong;Wang, Mei
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.175-183
    • /
    • 2012
  • Conventional synchronization algorithms for impulse radio require high-speed sampling and a precise local clock. Here, a phase-locked loop (PLL) scheme is introduced to acquire and track periodical impulses. The proposed impulse PLL (iPLL) is analyzed under an ideal Gaussian noise channel and multipath environment. The timing synchronization can be recovered directly from the locked frequency and phase. To make full use of the high harmonics of the received impulses efficiently in synchronization, the switching phase detector is applied in iPLL. It is capable of obtaining higher loop gain without a rise in timing errors. In different environments, simulations verify our analysis and show about one-tenth of the root mean square errors of conventional impulse synchronizations. The developed iPLL prototype applied in a high-speed ultra-wideband transceiver shows its feasibility, low complexity, and high precision.

A Simple If In-Phase Combiner and Its Performance for Point-to-Point Radio Relay System with Space Diversity

  • Suh Kyoung-Whoan
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The implementation of a simple analog in-phase combiner is presented for a high capacity radio relay system with space diversity. It provides good performance in terms of simple hardware and easy control, and measured results are in good agreement with simulated ones. To suggest practical applications, signatures with/without diversity are measured for STM-1 signal of 64-QAM radio relay system combined with a 13-tap equalizer, and they provided more than 25 dB fade depth at 10$^{-3}$ BER under the frequency selective fading condition.