• Title/Summary/Keyword: radical polymerization

Search Result 319, Processing Time 0.022 seconds

Investigation on Chain Transfer Reaction of Benzene Sulfonyl Chloride in Styrene Radical Polymerization

  • Li, Cuiping;Fu, Zhifeng;Shi, Yan
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.557-562
    • /
    • 2009
  • The free radical polymerization of styrene was initiated with azobis(isobutyronitrile) in the presence of benzene sulfonyl chloride. Analysis of the terminal structures of the obtained polystyrene with $^1H$ NMR spectroscopy revealed the presence of a phenyl sulfonyl group at the ${\alpha}$-end and a chlorine atom at the ${\omega}$-end of each polystyrene chain. The terminal chlorine atom in the polystyrene chains was further confirmed through atom transfer radical polymerization (ATRP) of styrene and methyl acrylate using the obtained polystyrenes as macroinitiators and CuCl/2,2'-bipyridine as the catalyst system. GPC traces of the products obtained in ATRP at different reaction times were clearly shifted to higher molecular weight direction, indicating that nearly all the macroinitiator chains initiated ATRP of the second monomers. In addition, the number-average molecular weights of the polystyrenes increased directly proportional to the monomer conversions, and agreed well with the theoretical ones.

The Effect of Camphorsulfonic Acid in TEMPO-Mediated Bulk and Dispersion Polymerization of Styrene

  • Oh Sejin;Kim Gijung;Ko Narae;Shim Sang Eun;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.187-193
    • /
    • 2005
  • The TEMPO-mediated living free-radical bulk and dispersion polymerization of styrene in the presence of camphorsulfonic acid (CSA) are investigated. In the absence of TEMPO and CSA in the bulk polymerization, a conversion of $93\%$ is achieved within 6 hr of polymerization. When only TEMPO is involved in this polymerization, the pseudo-living free-radical polymerization is well achieved, however, the polymerization rate becomes quite slow. This retardation of the polymerization rate is solved by the addition of a low concentration of CSA. In the TEMPO-mediated dispersion polymerization in the presence of CSA, similar trends in the conversion, kinetics, and PDI are observed as those observed in the case of bulk polymerization. When only TEMPO is used in the dispersion polymerization, the resulting particle size becomes quite broad, due to the prolonged polymerization time. However, when a 1.0 molar ratio of CSA to TEMPO is added to the TEMPO-mediated dispersion polymerization, fairly mono-disperse PS microspheres having an average size of 5.83 $\mu$m and a CV of 3.4$\%$ are successfully obtained, due to the narrow molecular weight distribution of the intermediate oligomers and shortening of the polymerization time. This result indicates that the addition of CSA to the TEMPO-mediated bulk and the use of dispersion polymerization not only shortens the polymerization time, but also greatly improves the uniformity of the microspheres.

Study on the Polymerization Characteristics of Isoprene through Nitroxide Mediated Controlled/"living" Radical Polymerization Techniques (Nitroxide 매개 리빙라디칼 중합법에 의한 isoprene의 중합특성에 관한 연구)

  • Hong, Sung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • In this study, investigation on the polymerization characteristics of isoprene through nitroxide mediated controlled/"living" radical polymerization techniques was attempted. In the presence of acetol, linear increase of isoprene conversion with time and low polydispersities of the resulting polymers ($M_w/M_n$ < 1.5) were observed, which suggest successful controlled/"living" radical polymerization of isoprene. The microstructure of the resulting polyisoprene was composed of $\sim$ 22% of 3, 4, $\sim$30% of 1, 4-cis and $\sim$ 48% of 1, 4-trans. The optimum polymerization temperature was 145 $^{circ}C$, below which no significant polymerization behavior was observed. Non-cyclic nitroxide, such as di-tert-butyl nitroxide (DTBN) could not mediate the polymerization, whereas cyclic nitroxides (2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (TEMPO) and 4-oxo-2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (oxoTEMPO)) were successfully employed for the polymerization. However, isoprene dimerization reaction through Diels-Alder process was also observed at the given polymerization condition, which afforded a significant amount of limonene. Isoprene thermal autoinitiation was also possible, which was, however, considered to be not significant under the given polymerization condition.

Characterization of Acrylic Polymer-Grafted MWNTs Prepared by Atom Transfer Radical Polymerization (원자이동 라디칼중합 반응에 의하여 제조된 아크릴계 고분자가 그래프트된 MWNT의 특성평가)

  • Joo, Young-Tae;Jung, Kwang-Ho;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.395-401
    • /
    • 2011
  • MWNT/PMMA and MWNT/PDMAEMA nanocomposites were prepared using an atom transfer radical polymerization (ATRP). The FTIR and XRD analysis results showed that the nanocomposites were composed of MWNTs grafted by either PMMA(PMMA-g-MWNTs) or PDMAEMA(PDMAEMA-g-MWNTs). A controlled living radical polymerization of ATRP was characterized by the thermogram analysis for the nanocomposites. The morphologies of prepared nanocomposites were analyzed by transmission electron microscopy. Raman analysis results for the nanocomposites showed that there occurred covalent bonding between acrylic polymers and MWNTs.

Aqueous Polymerization of Acrylamide Initiated by Periodic Acid and Its Kinetics

  • Cho, Myung-Rae;Han, Yang-Kyoo;Kim, Bum-Sung
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.147-152
    • /
    • 2000
  • The activity of periodic acid as an initiator for the polymerization of acrylamide in aqueous medium was investigated. The rate of polymerization was found to be proportional to the monomer concentration to the 1.5th power in the range of 1.41-5.64 mol/L. The reaction order to the periodic acid concentration was 0.49, which indicated a bimolecular mechanism for the termination reaction in the range of 0.5-4.0$\times$10$\^$-2/ mol/L. Propagation rate increased with raising the temperature according to an Arrhenius expression resulting in the exhibition of an apparent activation energy of 87.8 kJ/mol in the temperature range of 60-80$\^{C}$. The addition of hydroquinone as a radical scavenger stopped the polymerization of acrylamide initiated by periodic acid. These results support that the polymerization proceeds via a radical chain mechanism .

  • PDF

Preparation of Polyolefin Based Segmented Copolymers Through Controlled Radical Polymerization Technique (조절 라디칼 중합법에 의한 폴리올레핀 기반 분절 공중합체의 제조)

  • Hong, Sung-Chul;Lee, Seong-Hoon;Cho, Hyun-Chul
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.209-221
    • /
    • 2009
  • Polyolefins are important commodity polymers with the largest volume of business owing to their outstanding combination of cost performance and excellent physical properties. However, the lack of functional groups often has limited their end uses, such as compatibilizer, modifier and adhesive, where the interaction with other materials is especially important. The incorporation of functional groups as polymer segments to afford block or graft polyolefin copolymers has been extensively investigated in the context of the functional polyolefin hybrids. Living polymerization processes have been considered to be an efficient method to prepare the polyolefin hybrids with precisely controlled architecture and compositions. Among the living polymerization techniques, controlled/"living" radical polymerization (CRP) methods are very effective not only because of the controllability of polymerization but also because of the versatility of monomers and polymerization conditions. In this review paper, progresses on the preparations of polyolefin graft or block copolymers through CRP techniques are summarized. The commodity polymers such as polyisobutylene, polyethylene and polypropylene are combined with polar segments such as polyacrylate, polymethacrylate, polystyrene to yield functionalized polyolefins.

Free Radical Polymerization Algorithm for a Thermoplastic Polymer Matrix : A Molecular Dynamics Study (무정형 열가소성 고분자의 자유 라디칼 중합 분자동역학 시뮬레이션 알고리즘)

  • Jung, Ji-Won;Park, Chan-Wook;Yun, Gun-Jin
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.163-169
    • /
    • 2019
  • In this paper, we constructed a molecular dynamics (MD) polymer model of PMMA with 95% of conversion by using dynamic polymerization algorithm of a thermoplastic polymer based on free radical polymerization. In this algorithm, we introduced a united-atom level coarse-grained force field that combines the non-bonded terms from the TraPPE-UA force field and the bonded terms from the PCFF force field to alleviate the computation efforts. The molecular weight distribution and the average molecular weight of the polymer were calculated by investigating each chain generated from the free radical polymerization simulation. The molecular weight of the polymer was controlled by the number of initiator radicals presented in the initial state and molecular weight effect to the density, the glass transition temperature, and the mechanical properties were studied.

A Novel Synthetic Route to Highly Cross-Linked Poly(alkylvinylether)s. Synthesis and Free Radical Polymerization of a Vinyl Ether Monomer Containing Electron Acceptors in Side Chain

  • 이주연;이현주;김무용
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.257-262
    • /
    • 1996
  • p-(2-Vinyloxyethoxy)benzylidenemalononitrile 2 and methyl p-(2-vinyloxyethoxy)benzylidenecyanoacetate 3 was prepared by the condensation of p-(2-vinyloxyethoxy)benzaldehyde 1 with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 2 and 3 polymerized quantitatively with radical initiators in γ-butyrolactone solution at 65 ℃. The trisubstituted terminal double bond participated in the vinyl polymerization and radical polymerization of 2 and 3 led to swelling polymers 4 and 5 that were not soluble in common solvents due to cross-linking. Under the same polymerization conditions ethylvinyl ether polymerized well with model compounds of p-methoxybenzylidenemalononitrile 6 and methyl p-methoxybenzylidenecyanoacetate 7, respectively, to give 1:1 alternating copolymers 8 and 9 in high yields. Polymers 4 and 5 showed a thermal stability up to 300 ℃ without any characteristic Tg peaks in DSC thermograms. Alternating copolymers 8 and 9 were soluble in common solvents such as acetone and DMSO, and the inherent viscosities of the polymers were in the range of 0.36-0.74 dL/g. Films cast from acetone solution were cloudy and tough and Tg values obtained from DSC thermograms were in the range of 59-60 ℃.

Olefin Polymerization Activity and Crystal Structure of Alkyliron(Ⅲ) Porphyrin Complexes

  • Oh, Yung-Hee;Swenson, Dale;Goff, Harold M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.167-172
    • /
    • 2003
  • Alkyliron(Ⅲ) porphyrins, n-butyliron(Ⅲ) tetraphenylporphyrin, (TPP)Fe-Bu and n-butyliron(Ⅲ) tetrakis-(pentafluorophenyl)porphyrin, $(F_{20}TPP)Fe-Bu$ have been evaluated as suitable for olefin free-radical polymerization. Butyl radicals dissociated from n-butyliron(Ⅲ) porphyrin initiated the polymerization reaction, but the ratio of the propagation was low. The GCMS analysis of the reaction mixture of nbutyliron(Ⅲ) porphyrin and styrene has revealed several products containing two butyl groups, while traces of b-hydrogen-abstracted products were observed. The crystal structure of (TPP)Fe-Bu has been determined. The structure of the n-butyliron(Ⅲ) porphyrin reveals the compound containing five-coordinated iron with the average Fe-N distance of 1.973(1) Å and Fe-C of 2.030(2) Å. The iron atom is displaced by 0.137Å from a four nitrogen mean plane. Crystal system is triclinic, and space group is P-1.