• 제목/요약/키워드: radiation tolerance

검색결과 195건 처리시간 0.021초

이중화 구조를 이용한 비동기 디지털 시스템의 방사선 고장 극복 (A New Hardening Technique Against Radiation Faults in Asynchronous Digital Circuits Using Double Modular Redundancy)

  • 곽성우;양정민
    • 제어로봇시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.625-630
    • /
    • 2014
  • Asynchronous digital circuits working in military and space environments are often subject to the adverse effects of radiation faults. In this paper, we propose a new hardening technique against radiation faults. The considered digital system has the structure of DMR (Double Modular Redundancy), in which two sub-systems conduct the same work simultaneously. Based on the output feedback, the proposed scheme diagnoses occurrences of radiation faults and realizes immediate recovery to the normal behavior by overriding parts of memory bits of the faulty sub-system. As a case study, the proposed control scheme is applied to an asynchronous dual ring counter implemented in VHDL code.

방사선 유도 내염성 증진 사료용 옥수수 돌연변이체 특성 분석 (Characterization of a Gamma Radiation-Induced Salt-Tolerant Silage Maize Mutant)

  • 조철오;김경화;최만수;전재범;서미숙;정남희;진민아;손범영;김둘이
    • 한국육종학회지
    • /
    • 제51권4호
    • /
    • pp.318-325
    • /
    • 2019
  • 식물은 다양한 환경 스트레스에 적응하기 위해 스트레스 내성 유전자의 발현과 자연 돌연변이를 통해 외부 환경 및 자극에 대한 반응 특성을 강화시켜 왔다 본 연구는 사료용 옥수수를 대상으로 감마선을 이용하여 돌연변이 집단을 구축하고 내염성이 증대된 계통을 개발하고자 수행되었다. 140RS516은 NaCl 처리 조건에서 대조군인 KS140과 비교하여 증가된 염 스트레스 내성을 보였다. 감마선에 의한 다양한 유전변이를 보인 140RS516 식물체는 염 스트레스 조건에서 대조군보다 높은 발아율과 생장, 기공전도도 그리고 proline함량을 나타냈으며, 내염성에 관여하는 유전자들의 발현이 증가하였다. 따라서 본 연구를 통해 개발된 140RS516 옥수수는 간척지 염화토양과 같이 불량한 환경에서 작물 재배 및 생산이 가능한 내염성 품종을 개발하기 위한 육종 소재로 활용될 수 있을 것이다.

Chemoradiotherapy versus radiotherapy alone following induction chemotherapy for elderly patients with stage III lung cancer

  • Kim, Dong-Yun;Song, Changhoon;Kim, Se Hyun;Kim, Yu Jung;Lee, Jong Seok;Kim, Jae-Sung
    • Radiation Oncology Journal
    • /
    • 제37권3호
    • /
    • pp.176-184
    • /
    • 2019
  • Purpose: It is unclear whether adding concurrent chemotherapy (CT) to definitive radiotherapy (RT) following induction CT is a tolerable and cost effective treatment for non-small-cell lung cancer (NSCLC) patients aged 70 years or older with comorbidities. This study evaluated the actual clinical outcomes between concurrent chemoradiotherapy (CCRT) and RT alone following induction CT or not in patients (≥70 years) in a single institution's clinical practice. Materials and Methods: A total of 82 patients with unresectable stage III NSCLC between 2004 and 2016 were retrospectively analyzed. Their treatment tolerance and clinical outcomes such as overall survival (OS), locoregional recurrence (LRR), treatment toxicities and distant metastasis (DM) were evaluated. Early mortality rates were also evaluated as 4-month mortality after RT. Results: Fifty-four patients received CCRT and 28 patients received RT alone. Induction CT before RT was performed for 68.5% and 50.0% in CCRT and RT alone groups. Treatment tolerance was significantly worse in CCRT (p = 0.046). The median survival was 21.1 and 18.1 months for CCRT and RT alone, which was not statistically significant. LRR and DM were also not different. Most early deaths after CCRT were attributed to non-cancer-related mortality. Acute esophagitis of grade ≥2 occurred more following CCRT (p = 0.017). In multivariate analysis, a Charlson Comorbidity Index (CCI) of ≥5 and a weight loss of ≥5% after RT were associated with poor OS. The factors adversely affecting 4-month survival were a CCI of ≥5 and CCRT. Conclusion: There were no significant differences in OS, LRR, and DM between CCRT and RT alone treatment in elderly patients. However, there was a poorer tolerance and higher incidence of acute esophagitis in the CCRT group. Specifically, when the patients had a CCI of ≥5, RT alone seems to be reasonable with a low probability of early death.

Clinical and preclinical tolerance protocols for vascularized composite allograft transplantation

  • Yang, Jerry Huanda;Johnson, Ariel C.;Colakoglu, Salih;Huang, Christene A.;Mathes, David Woodbridge
    • Archives of Plastic Surgery
    • /
    • 제48권6호
    • /
    • pp.703-713
    • /
    • 2021
  • The field of vascularized composite allografts (VCAs) has undergone significant advancement in recent decades, and VCAs are increasingly common and accepted in the clinical setting, bringing hope of functional recovery to patients with debilitating injuries. A major obstacle facing the widespread application of VCAs is the side effect profile associated with the current immunosuppressive regimen, which can cause a wide array of complications such as infection, malignancy, and even death. Significant concerns remain regarding whether the treatment outweighs the risk. The potential solution to this dilemma would be achieving VCA tolerance, which would allow recipients to receive allografts without significant immunosuppression and its sequelae. Promising tolerance protocols are being studied in kidney transplantation; four major trials have attempted to withdraw immunosuppressive treatment with various successes. The common theme in all four trials is the use of radiation treatment and donor cell transplantation. The knowledge gained from these trials can provide valuable insight into the development of a VCA tolerance protocol. Despite similarities, VCAs present additional barriers compared to kidney allografts regarding tolerance induction. VCA donors are likely to be deceased, which limits the time for significant pre-conditioning. VCA donors are also more likely to be human leukocyte antigen-mismatched, which means that tolerance must be induced across major immunological barriers. This review also explores adjunct therapies studied in large animal models that could be the missing element in establishing a safe and stable tolerance induction method.

Radiation testing of low cost, commercial off the shelf microcontroller board

  • Fried, Tomas;Di Buono, Antonio;Cheneler, David;Cockbain, Neil;Dodds, Jonathan M.;Green, Peter R.;Lennox, Barry;Taylor, C. James;Monk, Stephen D.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3335-3343
    • /
    • 2021
  • The impact of gamma radiation on a commercial off the shelf microcontroller board has been investigated. Three different tests have been performed to ascertain the radiation tolerance of the device from a nuclear decommissioning deployment perspective. The first test analyses the effect of radiation on the output voltage of the on-board voltage regulator during irradiation. The second test evaluated the effect of gamma radiation on the voltage characteristics of analogue and digital inputs and outputs. The final test analyses the functionality of the microcontroller when using an external, shielded voltage regulator instead of the on-board voltage regulator. The results suggest that a series of latch-ups occurs in the microcontroller during irradiation, causing increased current drain which can damage the voltage regulator if it does not have short-circuit protection. The analogue to digital conversion functionality appears to be more sensitive to gamma radiation than digital and analogue output functionality. Using an external, shielded voltage regulator can prove beneficial when used for certain applications. The collected data suggests that detaching the voltage regulator can extend the lifespan of the platform up to approximately 350 Gy.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

Simulation-based analysis of total ionizing dose effects on low noise amplifier for wireless communications

  • Gandha Satria Adi;Dong-Seok Kim;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.568-574
    • /
    • 2024
  • The development of radiation-tolerant radio-frequency (RF) systems can be a solution for applications in extreme radiation environments, such as nuclear power plant monitoring and space exploration. Among the crucial components within an RF system, the low noise amplifier (LNA) stands out due to its vulnerability to TID effects, mainly relying on transistors as its main devices. In this study, the TID effects in the LNA using standard 0.18 ㎛ complementary metal oxide semiconductors (CMOS) technology are estimated and analyzed. The results show that the LNA can withstand absorbed radiation up to 100 kGy. The S21, S11, noise figure (NF), stability (K), and linearity of the third input intercept point (IIP3) slightly shifted from the initial values of 0.8312 dB, 0.793 dB, 0.00381 dB, 1.34406, and 2.36066 dBm, respectively which are still comparable to the typical performances. Moreover, the standard 0.18 ㎛ technology has demonstrated its radiation tolerance, as it exhibits negligible performance degradation in the conventional LNA even when exposed to radiation levels up to 100 kGy. In this context, simulation approach offers a means to predict the TID effects and estimate the radiation exposure limit for electronic devices, particularly when transistors are used as the primary RF components.

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder;Appukuttan, Deepti;Lim, Sangyong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1118-1122
    • /
    • 2014
  • The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

Isolation of Gamma-Induced Rice Mutants with Increased Tolerance to Salt by Anther Culture

  • Lee, In-Sok;Kim, Dong-Sub;Hyun, Do-Yoon;Lee, Sang-Jae;Song, Hi-Sup;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • 제5권1호
    • /
    • pp.51-57
    • /
    • 2003
  • Doubled haploids have long been recognized as a valuable tool in plant breeding since it not only offers the quickest method of advancing heterozygous breeding lines to homozygosity, but also increased the selection efficiency over conventional procedures due to better discrimination between genotypes within any one generation. Salt tolerant mutants were obtained in rice the variety, 'Hawsungbyeo', through in vitro mutagenesis of in vitro cultured anther-derived calli. Various doses (30, 50, 70 and 90 Gy) of gamma ray were applied to investigate the effect of radiation on callus formation on medium containing 1% NaCl, green plant regeneration, frequency of selected doubled haploid mutants and of the salt tolerant screen. It was demonstrated that the dose of 30 and 50 Gy gamma rays had significant effects on callus formation, regeneration and selection of salt tolerance. No tolerant lines were obtained from non-mutagenized cultures. From gamma ray irradiated cultures, five tolerant lines ($M_2$generation) at germination stage and 13 tolerant lines ($M_3$genoration) at seedling stage were obtained. The frequency of salt tolerant mutants indicates that anther culture applied in connection with gamma rays is an effective way to improve salt tolerance.

고에너지 방사선으로 단일조사한 백서위의 병리조직학적 변화에 관한 연구 (The Pathological Changes of Stomach in Experimental Rats following Single Irradiation of Supervoltage)

  • 최명선;서원혁
    • Radiation Oncology Journal
    • /
    • 제2권1호
    • /
    • pp.25-32
    • /
    • 1984
  • The pathological changes of stomach of the rat following 1,000 rad and 1,800 rad single exposure by Cobalt-60 has been made with 50 experimental rats. The dose of 1,000 rad and 1,800 rad single exposure were equivalent of biologic effect of 2,500 rad in 2 1/2 weeks and 6,000 rad in 6 weeks. Following single exposure, the groups of rat were terminated in 1, 2, 4, 8, 12 weeks intervals and the stomach were fixed to formalin solution immediatly after dissection. The pathological changes were as follows : 1. Following 1,000 rad single exposure, the stomach show only mild to moderate submucosal edema in 4,8,12 weeks group. 1 and 2 weeks group show no changes. 2. Following 1,800 rad single exposure, $32\%(8/25)$ of rats were dead by radiation effect and all other groups of stomach revealed variable pathological changes such as submucosal edema, squamous dysplasia, squamous papilloma as well as squamous cell carcinoma. 3. Optimal tolerance dose to the stomach was $4,500\~5,000$rad when irradiation given by supervoltage. The entire stomach was included within the irradiation field, the dose to the stomach should not exceed 6,000 rad. 4. In conclusion, the radiation injury to the stomach were more direct radiation effects to the gastric mucosa rather than secondary changes of radiation injured vessels.

  • PDF