• Title/Summary/Keyword: radiation sources

Search Result 590, Processing Time 0.025 seconds

Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System (수중 방사선 감시체계 구축을 위한 실시간 방사선 준위 모니터링 센서 개발)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.96-100
    • /
    • 2015
  • In the present study, we developed a real-time radiation-monitoring sensor for an underwater radiation-monitoring system and evaluated its effectiveness using reference radiation sources. The monitoring sensor was designed and miniaturized using a silicon photomultiplier (SiPM) and a cerium-doped-gadolinium-aluminum-gallium-garnet (Ce:GAGG) scintillator, and an underwater wireless monitoring system was implemented by employing a remote Bluetooth communication module. An acrylic water tank and reference radiation sources ($^{137}Cs$, $^{90}Sr$) were used to evaluate the effectiveness of the monitoring sensor. The underwater monitoring sensor's detection response and efficiency for gamma rays and beta particles as well as the linearity of the response according to the gammaray intensity were verified through an evaluation. This evaluation is expected to contribute to the development of base technology for an underwater radiation-monitoring system.

Comparison of Radiosensitivity of Bacteria Isolated from Given Radiation Exposure History (방사선 피폭역을 달리하여 분리한 세균의 방사선감수성 비교)

  • 김기수;민봉희;이강순
    • Korean Journal of Microbiology
    • /
    • v.12 no.2
    • /
    • pp.67-76
    • /
    • 1974
  • This experiment was carried out to identify and to compare the radiosensitivities of bacteriz isolated from the sources of different radiation exposure histories. Among 10 strains isolated in this investigation, 4 strains of bacteria, Bacillus firmus, Bacillus brevis, Baciilus subtilis and Bacillus sphaericus were isolated from high and low radioactive sites simulaneously. Bacterial strains isolated from radioactive sources such as reactor and isotope production rooms were more resistant to irradiation than the microganisms from medical products and laboratories, however, there was no significance in radiosensitivity in the same species of bacteriz, even if they were isolated from different radiation exposure histories.

  • PDF

A Study on Radiation Characteristics of Noise Sources for Korean Train Express (한국형 고속철도의 소음 방사특성에 관한 연구)

  • Kim, Jae-Chul;Koo, Dong-Heo;Moon, Kyeong-Ho;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.323-327
    • /
    • 2002
  • In order to control the railway noise, the radiation characteristic of the noise during the train passage should be analyzed. Generally, the major noise sources for Korean Train Express are the rolling noise and power unit noise up to 300km/h. In this paper, we describe on a train model that is considered to be a row of point sources to calculate the radiation characteristic. The calculation results are compared with short distance measurement. It is shown that the radiation characteristic of the rolling noise is dipole type. The noise generated by the power unit is radiated as the cosine type. The noise level at an observer is increased in the direction of motion and reduced in the direction opposite to the motion with increasing of the train speed. The calculation results including the moving effect of the noise source at 300km/h show in good agreement.

  • PDF

Calculation of Radiation Impedance for Piston Sources on a Spherical Baffle (구형 배플상의 피스톤 음원에 대한 방사임피던스 계산)

  • 박순종;김무준;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • The characteristics of radiation impedance for piston source on a spherical baffle are analyzed by algorithms which consists of Finite Element Method (FEM) and Hybrid type Infinite Element Method (HIEM). The results of self-radiation impedance for radiation angle and mutual radiation impedance between piston sources coincided with other reports on the spherical rigid baffle. For the spherical non-rigid baffles, the variations of self-radiation impedance and mutual-radiation impedance are identified. Therefore, these results can be applied to design and radiation characteristics analysis of acoustic transducers.

A Study on Radiation Characteristics of Noise Sources for Korean Train Express (한국형 고속철도의 소음 방사특성에 관한 연구)

  • Kim, Jae-Chul;Koo, Dong-Hoe;Moon, Kyung-Ho;Lee, Jae-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.337.1-337
    • /
    • 2002
  • In order to control the railway noise, the radiation characteristic of the noise during the train passage should be analyzed. Generally, the major noise sources for Korean Train Express are the rolling noise and power unit noise up to 300km/h. In this paper, we describe on a train model that is considered to be a row of point sources to calculate the radiation characteristic. The calculation results are compared with short distance measurement. (omitted)

  • PDF

An Study on Radiation Application and Public Safety (방사선이용과 공공안전)

  • 류재수;양맹호
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2003.11a
    • /
    • pp.369-386
    • /
    • 2003
  • Radiation technologies are being utilized in a wide range of daily modern life and provide the public with valuable benefits through applications in fields of medical, industrial, agricultural, and science & engineering research. On the other hand, there is a high possibility that radioactive materials can be used for malevolent purposes such as dirty bombs. The International community, therefore, has made efforts to improve the security of radioactive sources aimed at protecting the public from radiological terrorism. The paper investigated high-risk radioactive sources which could be used as dirty bombs. The paper reviewed the possibility of radiological weapon attacks and analyzed international trends to enhance security of radioactive sources. This study also proposed our countermeasures to reduce the threat of radiological terrorism and to properly respond to the radiological emergency caused by the radiological weapon attack.

  • PDF

Radiation mechanism of gamma-ray burst prompt emission

  • Uhm, Z. Lucas;Zhang, Bing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.3-50
    • /
    • 2015
  • Synchrotron radiation of relativistic electrons is an important radiation mechanism in many astrophysical sources. In the sources where the synchrotron cooling timescale is shorter than the dynamical timescale, electrons are cooled down below the minimum injection energy. It has been believed that such fast-cooling electrons have a power-law distribution in energy with an index -2, and their synchrotron radiation has a photon spectral index -1.5. On the other hand, in a transient expanding astrophysical source, such as a gamma-ray burst (GRB), the magnetic field strength in the emission region continuously decreases with radius. Here we study such a system, and find that in a certain parameter regime, the fast-cooling electrons can have a harder energy spectrum. We apply this new physical regime to GRBs, and suggest that the GRB prompt emission spectra whose low-energy photon spectral index has a typical value -1 could be due to synchrotron radiation in this moderately fast-cooling regime.

  • PDF

POLARIZATION AND POLARIMETRY: A REVIEW

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.1
    • /
    • pp.15-39
    • /
    • 2014
  • Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and $X/{\gamma}$ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

Study of External Radiation Expose Dose on Hands of Nuclear Medicine Workers (핵의학 종사자에서 손 부위의 외부 피폭선량 연구)

  • Park, Jun-Chul;Pyo, Sung-Jae
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2012
  • The aims of this study are to assess external radiation exposed doses of body and hands of nuclear medicine workers who handle radiation sources, and to measure radiation exposed doses of the hands induced by a whole body bone scan with high frequency and handling a radioactive sources like $^{99m}Tc$-HDP and $^{18}F$-FDG in the PET/CT examination. Skillful workers, who directly dispense and inject from radiation sources, were asked to wear a TLD on the chest and ring finger. Then, radiation exposed dose and duration exposed from daily radiation sources for each section were measured by using a pocket dosimeter for the accumulated external doses and the absorbed dose to the hands. In the survey of four medical institutions in Incheon Metropolitan City, only one of four institutions has a radiation dosimeter for local area like hands. Most of institutions uses radiation shielding devices for the purpose of protecting the body trunk, not local area. Even some institutions were revealed not to use such a shielding device. The exposed doses on the hands of nuclear medicine workers who directly handles radioactive sources were approximately twice as much as those on the body. The radiation exposure level for each section of the whole body bone scan with high frequency and that of the PET/CT examination showed that radiation doses were revealed in decreasing order of synthesis of radioactive medicine and installation to a dispensing container, dispensing, administering and transferring. Furthermore, there were statistically significant differences of radiation exposure doses of the hands before and after wearing a syringe shielder in administration of a radioactive sources. In this study, although it did not reach the permissible effective dose for nuclear medicine, the occupational workers were exposed by relatively higher dose level than the non-occupational workers. Therefore, the workers, who closely exposed to radioactive sources should be in compliance with safety management regulations, and take actions to maximally reduce locally exposed dose to hands monitoring with ring TLD.

Comparison of Thermal Protective Performance Test of Firefighter's Protective Clothing against Convection and radiation heat sources (대류와 복사 열원에 대한 특수방화복의 열보호 성능시험 비교)

  • Kim, Hae-Hyoung;Yoo, Seung-Joon;Park, Pyoung-Kyu;Kim, Young-Soo;Hong, Seung-Tae
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.17-23
    • /
    • 2017
  • The test methods using convection (flame) and radiation heat sources were compared to evaluate the thermal protective performance of the firefighter's protective clothing. In particular, the influence of the outer shell, mid-layer, and lining constituting the firefighter's protective clothing on the thermal protective performance was compared for convection and radiation heat sources. Tests for the thermal protective performance were carried out according to KS K ISO 9151 (convection), KS K ISO 6942 (radiation), and KS K ISO 17492 (convection and radiation). When tested under the same incident heat flux conditions ($80kW/m^2$), the heat transfer index ($t_{12}$ and $t_{24}$) for the radiation heat source was higher than that for the convection heat source. This means that radiation has a lesser effect than convection. For the convection heat source, the lining had the greatest effect on the thermal protective performance, followed by the mid-layer and the outer shell. On the other hand, for the radiation heat source, the effect on the thermal protective performance was great in the order of lining, outer shell, and mid-layer. Convection and radiation have fundamentally different mechanisms of heat transfer, and different heat sources can lead to different thermal protective performance results depending on the material composition. Therefore, to evaluate the thermal protective performance of the firefighter's protective clothing, it is important to test not only the convection heat source, but also the radiation heat source.