• Title/Summary/Keyword: radiation power

Search Result 1,954, Processing Time 0.029 seconds

RABBIT HEATING BY MICROWAVE EXPOSURE AT VARIOUS AMBIENT TEMPERATURES

  • Kolganova, Olga I.;Zhavoronkov, Leonid P.;Petin, Vladislav G.;Kim, Jin-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.99-104
    • /
    • 2010
  • The potential ability of environmental temperature to enhance the effect of microwave radiation (7 GHz) was experimentally studied for rabbit heating after simultaneous application of both agents. The tested ambient temperatures (30 and $38^{\circ}C$) didn't exert a considerable influence upon rabbit heat homeostasis after the used duration of exposure (3 hours and 15 minutes, correspondingly). The synergistic interaction of microwave irradiation and ambient temperature was demonstrated for rabbit heating. Power flux density of microwave irradiation was shown to be a determinant of the synergistic interaction effectiveness. For the fixed ambient temperature ($30^{\circ}C$), the synergism was shown to be observed only within a definite power flux density ($0-100\;mW{\cdot}cm^{-2}$), inside of which there was an optimal intensity ($20\;mW{\cdot}cm^{-2}$), which maximized the synergistic effect. Any deviation of the power flux density from the optimal value resulted in a reduction of the synergy. It is concluded that any assessment of the health or environmental risks should take into account the synergistic interaction between ambient temperature and microwave radiation.

Analysis on Improving Power of Thermal Radiation Shield in Low Pressure Chamber of AMTEC (AMTEC내 저압용기에서의 열복사차단막 형상에 따른 발전량 향상 해석)

  • Chung, Won-Sik;Chi, Ri-Guang;Lee, Wook-Hyun;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.54-62
    • /
    • 2016
  • The most efficient system for converting heat to electricity, AMTEC (Alkali Metal Thermal-to-Electric Convertor), is a device that directly converts heat energy to electricity using an alkali metal (sodium) as the working fluid. The AMTEC consists of a low pressure chamber, high pressure chamber, BASE (Beta-Alumina Solid Electrolyte), and artery wick. The main heat loss of the AMTEC system occurs in the low pressure chamber. A high power generation rate is thought to be obtainable by using a high temperature in the BASE. Therefore, to reduce the radiation heat loss, 6 types of radiation shields were examined to reduce the radiative heat loss in the low pressure chamber. The power generation rate of the AMTEC varied depending on the shape of the radiation shield. CFD (Computational Fluid Dynamics) analyses were carried out to optimize the shape of the radiation shield. As a result, the optimum radiation shield was found to consist of a curvature formed at the vertical point, in which case the dimensionless temperature (condenser temperature/BASE temperature) is approximately 0.665 and the maximum power generated is calculated to be 17.69W. Increasing the distance beween the BASE and condenser leads to an increase in the power generated, and the power generated with the longest distance was 17.58 W. The shields with multiple holes and multiple horizontal layers showed power reduction rates of 0.91 W and 2.06 W, respectively.

Cytogenetic and Medical Examination Report of Accidental Exposure of Nuclear Power Plant Worker using Multiple Assays (원자력 발전소 피폭자 건강영향평가 사례보고)

  • Lee, Jung-Eun;Yang, Kwang-Hee;Jang, Yun-Kun;Jeong, Mee-Seon;Kim, Chong-Soon;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.111-115
    • /
    • 2007
  • A deuterium oxide leakage accident occurred on October 4, 1999, at nuclear power plant in Korea. The concentration of tritium in air increased and 22 workers were exposed by tritium at that time. It is well known that tritium causes internal exposure. Therefore, we examined complete blood cell count, physical and biological dosimetry fur 13 workers among whole 22 workers to check the health effect and to evaluate the dose estimation of tritium exposure. The leukocyte count test, one of general blood test, was normal. The estimated doses were 0 - 4.44 mSv by physical dosimetry and 0-37 mGy by biological dosimetry. This dose does not exceed radiation dose limit, and the clinical symptoms of the exposed workers were not shown. The consistency between clinical sign and estimated dose means that physical and biological dosimetry were very useful especially in accident evaluation.

Hepatic Hemangiomas: Spectrum of US Appearances on Gray-scale, Power Doppler, and Contrast-Enhanced US

  • Kyoung Won Kim;Tae Kyoung Kim;Joon Koo Han;Ah Young Kim;Hyun Ju Lee;Seong Ho Park;Young Hoon Kim;Byung Ihn Choi
    • Korean Journal of Radiology
    • /
    • v.1 no.4
    • /
    • pp.191-197
    • /
    • 2000
  • Because US plays a key role in the initial evaluation of hepatic hemangiomas, knowledge of the entire spectrum of US appearances of these tumors is important. Most hemangiomas have a distinctive US appearance, and even with those with atypical appearances on conventional gray-scale US, specific diagnoses can be made using pulse-inversion harmonic US with contrast agents. In this essay, we review the spectrum of US appearances of hepatic hemangiomas on conventional gray-scale, power Doppler, and pulse-inversion harmonic US with contrast agents.

  • PDF

Study of the solar radiation and economic evaluation for the expected site of solar power plant on the waterworks site (수도사업장 태양광개발 예정지에 대한 일사량 및 경제성 평가에 관한 연구)

  • Choi, Hyeong-Cheol;Lee, Nam-Hyeong;Chang, Jeong-Ho;Na, Hye-Ran
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.139-142
    • /
    • 2009
  • The worldwide energy market is enlarging rapidly according to current issues like globalization, deregulation, global warming and strengthening for environmental regulation as well as the energy technology is developing speedily by the add of information and communication techniques. In spite of these advanced techniques in the field of the renewable energy, solar power depends on the governmental aid largely in comparison with other renewable energy sources because of the high initial investment cost. Therefore it is important to investigate scrupulously for the expected erection site of solar power plant from the planning stage. This paper shows actual measurement data of solar radiation of scheduled solar power locations in the waterworks site with consideration of waterworks facilities and regional specialties and presents the data which was analyzed comparably with the radiation data of adjacent locations served by national authorities. In addition, these data were analyzed using RETScreen and used for making decision on the business validity.

  • PDF

Laser- Plume Effects on Radiation Energy Transfer in Materials Processing (레이저 가공시 에너지 전달과 Plume 효과)

  • Kang, Kae-Myung;Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In laser materials processing, localized heating, melting and evaporation caused by focused laser radiation forms a vapor on the material surface. The plume is generally an unstable entity, fluctuating according to its own dynamics. The beam is refracted and absorbed as it traverses the plume, thus modifying its power density on the surface of the condensed phases. This modifies material evaporation and optical properties of the plume. A laser-produced plasma plume simulation is completed using axisymmetric, high-temperature gas dynamic model including the laser radiation power absorption, refraction, and reflection. The physical properties and velocity profiles are verified using the published experimental and numerical results. The simulation results provide the effect of plasma plume fluctuations on the laser power density and quantitative beam radius changes on the material surface. It is proved that beam absorption, reflection and defocusing effects through the plume are essential to obtain appropriate mathematical simulation results. It is also found that absorption of the beam in the plume has much less direct effect on the beam power density at the material surface than defocusing does and helium gas is more efficient in reducing the beam refraction and absorption effect compared to argon gas for common laser materials processing.

Multi-layers grid environment modeling for nuclear facilities: A virtual simulation-based exploration of dose assessment and dose optimization

  • Jia, Ming;Li, Mengkun;Mao, Ting;Yang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.956-963
    • /
    • 2020
  • Dose optimization for Radioactive Occupational Personal (ROP) is an important subject in nuclear and radiation safety field. The geometric environment of a nuclear facility is complex and the work area is radioactive, so traditional navigation model and radioactive data field cannot form an effective environment model for dose assessment and dose optimization. The environment model directly affects dose assessment and indirectly affects dose optimization, this is an urgent problem needed to be solved. Therefore, this paper focuses on an environment model used for Dose Assessment and Dose Optimization (DA&DO). We designed a multi-layer radiation field coupling modeling method, and then explored the influence of the environment model to DA&DO by virtual simulation. Then, a simulation test is done, the multi-layer radiation field coupling model for nuclear facilities is demonstrated to be effective for dose assessment and dose optimization through the experiments and analysis.

The Radiation Resistance Evaluation of Electrically Insulating Polymers

  • Lee, Dong-Hoon;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Im, Don-Sun;Kim, Ki-Yup;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2011
  • In this research, the radiation resistance of ethylene propylene rubber (EPR) and chlorosulfonated polyethylene (CSPE) which can be used as a insulating materials of for electrical cable in the nuclear power plant were investigated. EPR and CSPE were irradiated by ${\gamma}$-ray at various doses ranging from 50 to 500 kGy at room temperature in air. The irradiated EPR and CSPE was investigated in terms of activation energy, mechanical properties, and oxidation stability. The experimental results revealed that CSPE exhibited the higher radiation resistance in comparison to that of EPR.