• Title/Summary/Keyword: radiation concentration

Search Result 1,018, Processing Time 0.035 seconds

Preparation of Acrylic Acid Grafted Polypropylene by Electron Beam Irradiation and Heavy Metal Ion Adsorption Property (전자선 조사를 이용한 아크릴산이 그라프트된 폴리프로필렌의 제조 및 중금속 이온 흡착 특성)

  • Cheon, Ja young;Jeun, Joon-pyo
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.335-341
    • /
    • 2019
  • In this study, an acrylic acid (AAc) was grafted on a polypropylene (PP) nonwoven fabric using electron beam irradiation. Electron beam grafting was carried out under various conditions to produce AAc grafted PP (PP-g-AAc) nonwoven fabric having a grafting yield of about 50% at radiation dose of 100 kGy and a monomer concentration of 60%. The physical and chemical properties of PP-g-AAc nonwoven fabric were evaluated by SEM, ATR-FTIR, thermal analysis and tensile strength. The morphology of PP and PP-g-AAc nonwoven fabric confirmed by SEM showed no significant change, and it was judged that AAc was introduced into PP nonwoven fabric from ATR-FTIR. PP-g-AAc nonwoven fabric showed an increase in tensile strength and a decrease in tensile strain compared to PP nonwoven fabric. However, since change of value is not significant, it is considered that there is no significant influence on the physical characterization. Adsorption experiments of PP-g-AAc nonwoven fabric on various ions showed selective adsorption behavior for lead ion. In conclusion, the electron beam radiation-induced PP-g-AAc nonwoven fabric is expected to be applied as an effective adsorbent for the adsorption of lead ions.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Growth Model of Common Ice Plant (Mesembryanthemum crystallinum L.) Using Expolinear Functions in a Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 선형 지수 함수를 이용한 Common Ice Plant의 생육 모델)

  • Cha, Mi-Kyung;Kim, Ju-Sung;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.493-498
    • /
    • 2014
  • The objective of this study was to make growth and yield models for common ice plant (Mesembryanthemum crystallinum L.) using expolinear functional equations in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-hours photoperiod were used, and the light intensity was $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Nutrient film systems with three layers were used for plant growth. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Leaf area, shoot fresh and dry weights, light use efficiency of common ice plant as function of days after transplanting, accumulative temperature and accumulative radiation were analyzed. Leaf area, shoot fresh and dry weights per area were described using an expolinear equation. A linear relationship between shoot dry and fresh weights was observed. Light use efficiency of common ice plant was $3.3g{\cdot}MJ^{-1}$ at 30 days after transplanting. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of common ice plant in a closed plant production system.

Active Transport Characteristics of K+-Na+ Pumping System in Cell Membrane Model which Irradiated by High Energy X-ray (고에너지 엑스선을 조사한 세포막모델에서 K+-Na+ 펌프 시스템의 능동적 전달 특성)

  • Ko, In-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2017
  • The active transport characteristics of $K^+$ and $Na^+$ pumping system of cell membrane model which irradiated by high energy x-ray(linac 6MeV) was investigated. The cell membrane model used in this experiment was a $Na^+$ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH 1.5-5, temperature $36.5^{\circ}C$), the initial flux of $K^+$ which was not irradiated by radiation was found to be from $2.09{\times}10^{-4}$ to $1.32{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $7.09{\times}10^{-4}$ to $1.09{\times}10^{-3}mole/cm^2{\cdot}h$. the initial flux of $K^+$ which was irradiated by radiation was found to be from $21.0{\times}10^{-4}$ to $16.7{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $62.0{\times}10^{-4}$ to $20.6{\times}10^{-3}mole/cm^2{\cdot}h$. The ratio $K^+$/$Na^+$ of membrane was about 1.10. And the driving force of pH of irradiated membrane was significantly increased about 9-20 times than membrane which was not irradiated. As active transport of $K^+$ and $Na^+$ of cell membrane model were abnormal, cell damages were appeared at cell.

A Methodology for Determining the Optimal Durations of the Use of Contaminated Crops As Feedstuffs of Cattle Following a Nuclear Accident (원자력 사고후 가축 사료로서 오염 농작물 이용에 대한 최적기간 결정 방법론)

  • Hwang, Won-Tae;Han, Moon-Hee;Choi, Yong-Ho;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.65-72
    • /
    • 1999
  • A methodology for determining the optimal durations of the use of contaminated crops as feedstuffs of cattle was designed based on the cost-benefit analysis method. The results of application for pigs, an omnivorous cattle, were discussed for the hypothetical deposition of radionuclides on August 15 when a number of crops are fully developed in Korean agricultural conditions. For investigating the relative cost-effectiveness of the use of contaminated crops as feedstuffs, the net benefit was compared with the case of the direct disposal of contaminated crops. The time-dependent radionuclide concentration in crops after the deposition was predicted using a dynamic food chain model DYNACON. The net benefit from the actions was quantitatively evaluated in terms of cost equivalent of doses and monetary costs of implementing the action. It depended on a number of factors such as radionuclides, variety of crops supplied as feedstuffs and duration of the actions. The use of contaminated crops as feedstuffs was more cost effective for $^{90}Sr\;or\;^{131}I$ deposition than for $^{137}Cs$ deposition.

  • PDF

Assessment of Radionuclide Deposition on Korean Urban Residential Area

  • Lee, Joeun;Han, Moon Hee;Kim, Eun Han;Lee, Cheol Woo;Jeong, Hae Sun
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • Background: An important lesson learned from the Fukushima accident is that the transition to the mid- and long-term phases from the emergency-response phase requires less than a year, which is not very long. It is necessary to know how much radioactive material has been deposited in an urban area to establish mid- and long-term countermeasures after a radioactive accident. Therefore, an urban deposition model that can indicate the site-specific characteristics must be developed. Materials and Methods: In this study, the generalized urban deposition velocity and the subsequent variation in radionuclide contamination were estimated based on the characteristics of the Korean urban environment. Furthermore, the application of the obtained generalized deposition velocity in a hypothetical scenario was investigated. Results and Discussion: The generalized deposition velocities of 137Cs, 106Ru, and 131I for each residence type were obtained using three-dimensional (3D) modeling. For all residence types, the deposition velocities of 131I are greater than those of 106Ru and 137Cs. In addition, we calculated the generalized deposition velocities for each residential types. Iodine was the most deposited nuclide during initial deposition. However, the concentration of iodine in urban environment drastically decreases owing to its relatively shorter half-life than 106Ru and 137Cs. Furthermore, the amount of radioactive material deposited in nonresidential areas, especially in parks and schools, is more than that deposited in residential areas. Conclusion: In this study, the generalized urban deposition velocities and the subsequent deposition changes were estimated for the Korean urban environment. The 3D modeling was performed for each type of urban residential area, and the average deposition velocity was obtained and applied to a hypothetical accident. Based on the estimated deposition velocities, the decision-making systems can be improved for responding to radioactive contamination in urban areas. Furthermore, this study can be useful to predict the radiological dose in case of large-scale urban contamination and can support decision-making for long-term measurement after nuclear accident.

Immunomodulatory Activity of Crude Polysaccharide Separated from Cudrania tricuspidata Leaf (꾸지뽕(Cudrania tricuspidata) 잎으로부터 분리된 다당류 추출물의 면역 활성)

  • Byun, Eui-Baek;Jang, Beom-Su;Sung, Nak-Yun;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1099-1106
    • /
    • 2016
  • The objective of this study was to evaluate the immunomodulatory activity of crude polysaccharide separated from Cudrania tricuspidata leaf. C. tricuspidata polysaccharide (CTP) was extracted by ethanol precipitation. Immunomodulation activity was tested in macrophage cells (RAW 264.7 and bone-marrow derived macrophage) and splenocytes. CTP treatment significantly increased cell proliferation up to $250{\mu}g/mL$ in both RAW 264.7 and bone-marrow derived macrophages. In this concentration range (below $250{\mu}g/mL$), nitric oxide and cytokine [tumor necrosis factor $(TNF)-{\alpha}$ and interleukin (IL)-6] production also significantly increased. Similarly, splenocyte proliferation dosedependently increased except for the $1,000{\mu}g/mL$ treated group. Regarding cytokine production activity in splenocytes, CTP treatment significantly increased production of Th 1 type cytokines [interferon $(IFN)-{\gamma}$] production but not Th 2 type cytokines (IL-4). Therefore, the results indicate that CTP may have a potential effect on immunomodulatory activity in various immune cells, and this is useful for development of immune enhancing adjuvant materials as a natural ingredient.

Characterization of Water-Filled Ag/AgCl Reference Electrode

  • Bahn Chi Bum;Oh Sihyoung;Hwang Il Soon;Chung Hahn Sup;Jegarl Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.87-93
    • /
    • 2001
  • Pressure-balanced external Ag/AgCl electrode has been extensively used for both Pressurized Water Reactor (PWR) and Boiling Water Reactor (PWR) environments. The use of KCI-based buffer solution often becomes the source of electrode potential drift due to slow leakage through its porous plug, typically made of zirconia. It is reported that results of our effort to improve the stability of electrode potential by using high purity water as the filling solution in which $Cl^-$ ion activity can be established and maintained at the solubility of AgCl even with the sustained leakage for a long period. Stability tests have been made in boron and lithium mixture solution at $288^{\circ}C$. The electrode potential remained stable within 10 mV over one week period. And after a thermal cycle between 288 to $240^{\circ}C$ the potential shift of Ag/AgCl electrodes did not exceed 15 mV By using the limiting equivalent ionic conductances and Agar's hydrodynamic theory, the thermal liquid junction potential (TLJP) of the electrode has been predicted. The calculated values for the water-fiued Ag/AgCl electrode potential, in which the chlorine concentration in the filling solution was derived from the measured data at ambient temperature, had a good agreement with the experimental values.

Comparison of Characteristics of Local Meteorological and Particulate Matter(TSP) on the Beopjusa Temple and Seonamsa Temple (법주사와 선암사의 국지 기상 및 미세먼지 특성 비교)

  • Kim, Myoung Nam;Lim, Bo A;Lee, Myeong Seong;Jeong, So Young
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.283-295
    • /
    • 2017
  • It is crucial to measure meteorological elements in relation to the biodeterioration of building cultural heritages. The Beopjusa and Seonamsa temples located respectively in Chungbuk and Jeonnam provinces, Korea, exhibit biological damage to the building cultural heritages and cause noticeable climatic differences. To compare biodeterioration environments of the abovementioned temples, 10 meteorological elements were observed, and particulate matter (TSP) was collected at each location. Furthermore, a correlation analysis was conducted between meteorological elements, and between meteorological elements and TSP. The local meteorology at Beopjusa temple characteristically showcased high total horizontal radiation, UV radiation, evaporation, wind speed, and TSP concentration, whereas, that at Seonamsa temple showcased high temperature, humidity, dew point temperature, air pressure, precipitation and number of days with precipitation. An elemental analysis of TSP revealed the presence of sae-salts at Seonamsa temple, and compared to that of Beopjusa temple, the monthly frequencies of biogenic aerosol and Fe-containing particles were higher. The correlation analysis showed that wind speed and humidity were major meteorological factors at Beopjusa and Seonamsa temples, respectively. Subsequently, the characteristics of the local meteorology at Seonamsa temple are expected to affect the biological damage of the building cultural heritages, which is favorable for the growth of various organisms.

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF