• Title/Summary/Keyword: radiation concentration

Search Result 1,018, Processing Time 0.029 seconds

A study on radiation degradation of LDPE by using ESR (ESR을 이용한 저밀도 폴리에틸렌의 방사선 열화에 관한 연구)

  • Kim, Ki-Yup;Kim, Jin-Ah;Lee, Chung;Kim, Pyeong-Jong;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.473-476
    • /
    • 2004
  • This study has investigated radiation degradation of low density polyethylene(LDPE). Samples were irradiated using a $Co^{60}\;\gamma-ray$ and ray up to 800 kGy at a dose rate of 5 kGy/hr in the presence of air atmosphere at room temperature. After irradiation, free radical measurement of LDPE has established by electron spin resonance(ESR). Then, each sample was stored for 2 weeks. ESR measurement showed that free radical concentration(FRC) was increased with radiation dose and changed from alkyl, allyl radical to peroxy radical with time.

  • PDF

Practical Radiation Safety Control: (II) Application of Numerical Guidance for the Discharges of Radioactive Gaseous and Liquid Effluents (방사선안전관리 실무: (II) 배기중 및 배수중 배출관리기준의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.61-64
    • /
    • 2014
  • Radioactive materials are in use and have many applications from the generation of electricity to the purposes of research, industry and medicine such as diagnosis and therapy. In the course of their use some of radioactive substances may be discharged into the environment from facilities using the unsealed radioactive materials, which are main artificial sources occurring the public exposure. Discharges are in the form of gases, particles or liquids. This paper provides procedures to estimate the level of the public exposure based on the conservative assumptions and simple calculations in the facility using unsealed liquid sources. They consist of two processes; (1) to calculate maximum concentration of gaseous effluents discharged through the exhaust pipe and average concentration of liquid effluents discharged through the drain of the storage tank, (2) to compare each of them to numerical guidances for the discharges of radioactive gaseous and liquid effluents mentioned in the related notification. For this purpose followings are assumed properly; daily usage, form and dispersion rate of radionuclides, daily amount of radioactive liquid waste and exhaust and drainage equipment. The procedures are readily applicable to evaluate environmental effects by planned effluent discharges from facilities using the unsealed radioactive materials. In addition they may be utilized to obtain practical requirements for radiation safety control necessary for the reductions of the public exposure.

UV-B Effects on Growth and Nitrate Dynamics in Antarctic Marine Diatoms Chaetoceros neogracile and Stellarima microtrias (중파 자외선에 노출된 남극 규조 Chaetoceros neogracile와 Stellarima microtrias의 성장과 질산염 흡수량의 변화)

  • Gang, Jae Sin;Gang, Seong Ho;Lee, Yun Ho;Sim, Jeong Hui;Lee, Sang Hun
    • ALGAE
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Two isolated Antarctic marine diatoms, Chaetoceros neogracile VanLandingham and Stellarima microtrias (Ehrenberg) Hasle and Sims were examined to show changes of growth and uptake rate of nitrate due to UV-B irradiance. Chlorophyll (chl) a concentration was regarded as the growth index of diatom. The diatoms were treated with UV-B radiation and cultured for 4 days under cool-white fluorescent light without UV-B radiation. Two levels of UV-B exposures were applies: 1 and 6 W $m^{-2}$. Durations of UV-B treatment were 20, 40 and 60 minutes under 6 W $m^{-2}$ and 1, 2, 3, 4 and 5 hrs under 1 W $m^{-2}$. The control groups were cultured at the same time without UV-B radiation. The growth rates of two diatoms decreased under 1 and 6 W $m^{-2}$ UV-B irradiances than that of control group. After 4 days, chl a concentrations of C. neogracile were increased more than 4 times from 133 μgo$l^{-1}$ to 632 μgo$l^{-1}$ in control group. However, the concentration of experimental groups under 1 W $m^{-2}$ UV-B were only increased from 139 μgo$l^{-1}$ to 421 μgo$l^{-1}$ during one hour and the chl a concentrations were decreased from 144 μgo$l^{-1}$ to 108 μgo$l^{-1}$ during five hour. Growth of diatom dramatically more decreased under 6 W $m^{-2}$ UV-B than 1 W $m^{-2}$ UV-B. The chl a concentration of experimental groups under 6 W $m^{-2}$ UV-B for one hour was only increased from 111 μgo$l^{-1}$ to 122 μgo$l^{-1}$. In the case of S. microtrias showed also similar pattern to C. neogracile by UV-B radiation. The uptake rates of nitrate by the two strains were decreased abruptly under 6 W $m^{-2}$ UV-B irradiances. When two strains were treated under 1 and 6 W $m^{-2}$ UV-B during one hour, the strains were only continued growth and uptake of nitrate under 1 W $m^{-2}$ UV-B. This experimental evidence shows that exposure to UV-B radiation especially to high irradiance of UV-B decreases diatom survival and causes lower decrease of nutrient concentrations by microalgae in Antarctic water. Furthermore, evidence suggests that microalgal communities confined to near-surface waters in Antarctica will be harmed by increased UV-B radiation, thereby altering the dynamics of Antarctic marine ecosystems.

Radiation-Induced Graft Copolymerization of Methacrylic Acid and Methyl methacrylate onto Polyester.

  • Kang, Young-Kun;Chang, Hoon-Seun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 1978
  • The radiation-induced graft polymerization of methacrlic acid and methyl methacrylate onto a polyester fabric was investigated with ${\gamma}$-ray as the radiation source, and the rate of grafting was examined. When acrylic acid, methacrylic acid, and methyl methacrylate were grafted onto a polyester fabric, grafting efficiency was depened upon the dielectric constant of the solvent in the monomer mixture. The yield of the graft polymerization was related to the total dose, the concentration of the monomer, and the concentration of the swelling agent. The melting point and the glass transition temperature of MA and MMA grafted copolymers were analysed by means of DTA. Physical properties, such as the moisture regain, the antistatic property, and the wicking time were measured.

  • PDF

Influence of Dust Environment on the Detection Capability of Ultraviolet Flame Detector (UV 화염감지기의 감지성능에 대한 분진분위기의 영향)

  • Kim Hong;Hu Rui
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.113-119
    • /
    • 1997
  • The detection capability of UV flame detector in dust environment would be impaired. In this study, an experiment was conducted, in an effort to further understand the behavior of UV flame detector and to evaluate its detection capability in industry dust environment. Detergent powder, coal powder and dry extinguishing agent were selected as dust sources. Flaming sources include propane and gasoline flame. Experiment results indicate that dust can cause remarkable attenuation of UV flame radiation. The concentration of dust and the length of air layer where dust dispersed determine the reduction of radiation intensity. On the other hand, the attenuation of UV radiation also depends on the chemical and Physical properties of dust.

  • PDF

Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation

  • Zhuang, Shuting;Yin, Yanan;Wang, Jianlong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.211-215
    • /
    • 2018
  • Chitosan was modified by gamma radiation-induced grafting with maleic acid and then used for the removal of cobalt ions from aqueous solutions. Chitosan-g-maleic acid was characterized by Fourier Transform infrared spectroscopy (FT-IR). The effect of the dose (1-5 kGy) and monomer concentration (0.3-1.3%, m/v) on the grafting ratio was examined. The adsorption kinetics and isotherms were also investigated. The results showed that the optimal dose for grafting was 2 kGy. When monomer concentration was within the range of 0.3-1.3% (m/v), the grafting ratio increased almost linearly. For the adsorption of cobalt ions by chitosan-g-maleic acid beads, the pseudo second-order kinetic model ($R^2=0.99$) and Temkin isotherm model ($R^2=0.96$) were able to fit the experimental data reasonably well. The equilibrium adsorption capacity of cobalt ions increased from 2.00 mg/g to 2.78 mg/g after chitosan modification.

Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

  • Mahdavi, Seyed Mohammad;Sahraei, Hedayat;Yaghmaei, Parichehreh;Tavakoli, Hassan
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas noradrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro (Vanadate 처리가 종양세포의 방사선 감수성에 미치는 영향)

  • Lee, Myung-Za;Lee, Won-Young
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.129-141
    • /
    • 1994
  • Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cellls but not CCL-120 normal cells to radiation. Ouabain inhibits the $Na^+-K^+$-pump rapidly thus it increases intracellular Na concentration, Vanadate which is distributed extensively in almost all living organisms is known to be a $Na^+-K^+$-ATPase inhibitors, This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of $Na^+-K^+$ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMC cells and frypan blue dye exclusion test for L120, and spleen cells. Measurements of $Na^+-K^+$-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined $10^{-6}M$ vanadate and radiation treated cells were done. The results were summerized as fellows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Mininum or no cytotoxicity was seen with vanadate below concentration of $10^{-6}M$. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. e. 2- Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. $Na^+-K^+$-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiaiton itself inhibited $Na^+-K^+$-ATPase activity of tumor cell with high $Na^+-K^+$-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with orginal $Na^+-K^+$-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized tumor cells to radiation. Inhibitory effect of vanadate on $Na^+-K^+$-ATPase activity might be one of the contributing factors for radiosensitization to tumor cells which has greater enzyme activity than that of normal cell. It was suggested vanadate could be used as a potential radiosensitizer for tumor cells.

  • PDF

Improvement of the Biodegradability of Polyvinyl Alcohol by Radiation Treatment (방사선 처리에 의한 폴리비닐 알콜의 생분해도 개선)

  • Jung, Jinho;Park, Nam-Young;Jo, Hun-Je;Lee, Sun-Mi;Kim, Jeong-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.241-244
    • /
    • 2004
  • Radiation treatment with gamma-rays and electron-beams was used to remove polyvinyl alcohol(PVA), one of the main components of dyeing wastewater. PVA was effectively decomposed by radiation treatment, thus the removal was near 100 % at an initial PVA concentration of 44 mg/L. However, total organic carbon(TOC) removal was less than 5 % due to lower transformation of PVA to $CO_2$. This directly indicates the radiation treatment alone is not appropriate for the complete decomposition of PVA. In this sense, the improvement of biodegradability($BOD_5/COD$) of PVA by radiation treatment was studied. Both gamma-ray and electron-beam treatments significantly increased the biodegradability of PVA by transforming non-biodegradable PVA to biodegradable by-products. This suggests radiation treatment, especially electron-beam treatment that showed better improvement of biodegradability, can be used as a pre-treatment of biological degradation process of PVA.

Antimicrobial Fiber Products Treated with Silica Hybrid Ag Nanoparticles

  • Kim, Hwa-Jung;Park, Hae-Jin;Choi, Seong-Ho;Park, Hae-Jun
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Silica hybrid silver nanoparticles showing the strong antimicrobial activity, in which nano-silver is bound to silica molecules, has been synthesized using ${\gamma}-irradiation$ at room temperature. The present study relates to an antimicrobial composition for coating fiber products comprising silica hybrid silver nanoparticles. In this study, we describe antimicrobial fiber products coated with the silica hybrid silver nanoparticles and a method of antimicrobially treating fiber products by coating the fiber products with the silica hybrid silver nanoparticles. The antimicrobial fiber products exhibited excellent antimicrobial effects. In detailed practice, when the present composition comprising nanosized silica-silver was applied to a cloth (fabric) in a concentration of $6.4mg\;yard^{-1}$, the viable cell number decreased to less than 10 cells before and after laundering, resulting in a reduction of 99.9% or greater in the viable cell number. The present composition displays long-lasting potent disinfecting effects on bacteria. Also, we investigated the toxicity of silica hybrid silver nanoparticles in rats. The skin of rats was treated with a 30 ppm nanoparticles solution ($2ml\;Kg^{-1}$) for 8 days. No toxicity was detected in the treatment. These results suggest that the fiber products coated with the silica hybrid silver nanoparticles can be used to inhibit the growth of various microorganisms.