• 제목/요약/키워드: radiant tube heater

검색결과 2건 처리시간 0.016초

열처리용 복사튜브의 국부 과열 해소 (Prevention of local overheating of a radiant tube heater)

  • 김형수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.119-125
    • /
    • 2004
  • Radiant tube heaters are widely used for indirect heating in heat treatment processes such as continuous annealing line(CAL) or continuous galvanizing line(CGL). Main issues for radiant tube are temperature uniformity, lifetime, thermal efficiency. To achieve higher heat release, the radiant tubes are fired at a higher fuel rate and therefore local overheating occur. A numerical simulation based on a commercial code FLUENT has been performed to investigate local overheating of radiant tube heaters. To minimize local overheating, the effects of radiating fins, flue gas recirculation(FGR), two-stage combustion were investigated. More uniform temperature distribution was achieved in the longitudinal direction within the tube with radiating fins and this contributed to increase the life of radiant tubes. Furthermore, the radiant tube with radiating fins was proven to be more efficient than the one without fins. The effects of flue gas recirculation and two stage combustion on the efficiency of the radiant tube were also considered and the results were presented.

  • PDF

복사전열 가열로 튜브의 파손방지에 대한 연구 (A Study on Failure Prevention of Radiant Heater Tube)

  • 윤기봉;심상훈;유홍선;오현환
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.47-53
    • /
    • 1998
  • Radiant heater tubes with an inside burner are designed to transfer the heat generated from the burner to the outside of the tube by radiation. Hence, tube metal must suffer high temperature of approximately 900-$1000^{\circ}C$. The radiant tube is usually manufactured by centrifugal casting with high Ni-Cr alloys. In this study, failure analysis results of the radiant tube are reported. Failure mechanism of the tube was investigated by visual observation of the foiled tube, metallographic study of the cracked region and chemical analysis of tube metal and oxide scales. It was argued that the main cause of the cracking is repeated oxidation of the tube metal located beneath the thick oxide scale. Oxidation was caused by abnormally high operating temperature which can be verified by aged microstructure and internal void formation.

  • PDF