• 제목/요약/키워드: radial permeability

Search Result 54, Processing Time 0.033 seconds

Prediction of Permeability for Braided Preform (브레이드 프리폼의 투과율 계수 예측)

  • Youngseok Song;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.184-187
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional circular braided preform is critical to understand the resin transfer molding process of composites. The permeability can be predicted by considering resin flow through the multi-axial fiber structure. In this study, permeability tensor for a 3-D circular braided preform is calculated by solving a boundary problem of a periodic unit cell. Flow field through the unit cell is obtained by using a 3-D finite volume method (FVM) and Darcy's law is utilized to obtain permeability tensor. Flow analysis for two cases that a fiber tow is regarded as impermeable solid and permeable porous medium is carried out respectively. It is found that the flow within the intra-tow region of the braided preform is negligible if inter-tow porosity is relatively high but the flow through the tow must be considered when the porosity is low. To avoid checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity variation is proposed on the basis of analytic solutions. Permeability of the braided preform is measured through a radial flow experiment and compared with the permeability predicted numerically.

  • PDF

Air Permeability of Softwoods Imported from the Russian Far East (북양(北洋) 침엽수재(針葉樹材)의 공기(空氣) 투과성(透過性))

  • Jee, Woo-Kuen;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.22-31
    • /
    • 1996
  • Air permeabilities for both sapwood and heartwood of the three softwoods(Picea jezoensis, Larix gmelini, Pinus sylvestris), imported from the Russian Far East, in the three different structural directions were measured using steady-state rotameter method. After measuring permeability, the liquid absorption into the longitudinal permeability specimens was measured, and then related with the measured permeability. The longitudinal permeability was overwhelmingly greater than the transverse permeability, with the radial direction showing higher permeability than the tangential direction. There appear to be species differences in permeability of the three softwoods. The mean longitudinal sapwood permeability of P. jezoensis(3.300darcy) and P. sylvestris(3.028darcy) were considerably greater(ca. 25times) than that of L. gmelini(0.134darcy). Also the average longitudinal heartwood permeability of P. jezoensis(0.300darcy) was about 10 times as great as that of P. sylvestris(0.029darcy) and L. gmelini(0.024darcy). The average calculated radius of pit openings in the heartwood was $0.101{\mu}m$ for L. gmelini, $0.152{\mu}m$ for P. sylvestris for and $0.703{\mu}m$ for P. jezoensis. Heartwood permeability increases with the increase in radius of pit pore and the decrease in ring width and in extractive content, even though the correlation between permeability and its affecting factors was dependent on species. However, there was an inverse relationship between specific gravity and permeability, showing poor correlation between them. The correlation between air permeability and liquid retention was fairly high, so it was revealed that prediction of liquid absorption into the wood by using permeability was feasible.

  • PDF

Radial Variation of Sound Absorption Capability in the Cross Sectional Surface of Yellow Poplar Wood (백합나무 횡단면 흡음성능의 방사방향 변이)

  • Kang, Chun-Won;Lee, Youn-Hun;Kang, Ho-Yang;Kang, Wook;Xu, Huiran;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Radial variation of sound absorption capability and air permeability of yellow poplar (Liriodendron tulipifera) wood in cross sectional surface and effect of steam explosion treatment were estimated by the two microphone transfer function method and the capillary flow porometry, respectively. The sound absorption coefficients of steam explosion treated wood was higher than those of control wood and these values increased with frequency. Abundant and big vessel may behave as sound absorbing pore observed on the cross sectional surface of yellow poplar wood. The sound absorption coefficients and air permeability of sapwood were higher than those of heartwood for Liriodendron tulipifera.

Permeability Measurement of a Circular Braided Preform for Resin Transfer Molding

  • Cho, Yun Kyoung;Song, Young Seok;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.135-144
    • /
    • 2003
  • Permeability of the preform is one of key factors in design of RTM (Resin Transfer Molding) mold, determination of processing conditions, and modeling of flow in the mold. According to previous studies, permeability measured in the unsaturated fiber mats are higher than that in the saturated fiber mats by about 20% because of the capillary pressure. In this study, permeabilities of several fiber preforms are measured for both saturated and unsaturated flows. A saturated experiment of radial flow has been adopted to measure the permeability of anisotropic fiber preforms with high fiber content, i.e., circular braided preforms. In this method, four pressure transducers are used to measure the pressure distribution. Permeabilities in different directions are determined and the experimental results show a good agreement with the theory. Since permeability is affected by the capillary effect, permeability should be measured in the unsaturated condition for the textile composites to be manufactured under lower pressure as in the Vacuum Assisted Resin Transfer Molding (VARTM).

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V.;Abudhair, A.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.437-441
    • /
    • 2016
  • Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.

Comparison of Different Permeability Models for Production-induced Compaction in Sandstone Reservoirs

  • To, Thanh;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.367-381
    • /
    • 2019
  • We investigate pore pressure conditions and reservoir compaction associated with oil and gas production using 3 different permeability models, which are all based on one-dimensional radial flow diffusion model, but differ in considering permeability evolution during production. Model 1 assumes the most simplistic constant and invariable permeability regardless of production; Model 2 considers permeability reduction associated with reservoir compaction only due to pore pressure drawdown during production; Model 3 also considers permeability reduction but due to the effects of both pore pressure drawdown and coupled pore pressure-stress process. We first derive a unified stress-permeability relation that can be used for various sandstones. We then apply this equation to calculate pore pressure and permeability changes in the reservoir due to fluid extraction using the three permeability models. All the three models yield pore pressure profiles in the form of pressure funnel with different amounts of drawdown. Model 1, assuming constant permeability, obviously predicts the least amount of drawdown with pore pressure condition highest among the three models investigated. Model 2 estimates the largest amount of drawdown and lowest pore pressure condition. Model 3 shows slightly higher pore pressure condition than Model 2 because stress-pore pressure coupling process reduces the effective stress increase due to pore pressure depletion. We compare field data of production rate with the results of the three models. While models 1 and 2 respectively overestimates and underestimates the production rate, Model 3 estimates the field data fairly well. Our result affirms that coupling process between stress and pore pressure occurs during production, and that it is important to incorporate the coupling process in the permeability modeling, especially for tight reservoir having low permeability.

The Characteristics of Consolidation and Permeability in Normally Consolidated Region Using a Remolded Decomposed Mudstone Soil (재성형된 이암풍화토를 이용한 정규압밀영역의 압밀 및 투수특성)

  • 김영수;김기영;이상웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • When clay foundations of embankments are treated with vertical drain, essentially, the strain occurs to vertical direction but the water flow is radial. The initial horizontal permeability and its variation with the vertical compression are key parameters for the choice of the type of drains, their spacing, and affect to the cost of the project. In this study, CRS consolidation test is performed to investigate the anisotropic characteristics of decomposed mudstone soil and direct permeability test is performed on the same specimens. The results of testing show that Ch is larger than Cv. specially, the Cv - $\sigma$v relationship for a soil sample is viewed from three different curve segments corresponding to overconsolidated, transition and normally consolidated states. The anisotropic ratio, rk(kh/kv) is 2.19. Coefficient of permeability in normally consolidated state is related to its void ratio and permeability parameter n. C can be determined from a linear plot of log[k(1+e)] versus log e. The slope, n, of graphs is the same, whereas the vertical intercept, log C, seems to vary somewhat for anisotropic.

  • PDF

Centrifuge Modeling of Soft Clay with Vertical Drains Considering the Centrifuge Similarity (상사성을 고려한 배수재 설치 연약점토 지반의 원심모델링)

  • Yoo, Nam-Jae;Hong, Young-Kil;Jeong, Gil-Soo;Cho, Han-Ki
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.111-120
    • /
    • 2007
  • This paper is results of experimental research on the effect of application of similarity related to permeability of soil on the consolidation behavior as centrifuge modeling of consolidation is performed with the centrifuge model facility. In this research, the permeability of soil was controlled by changing the viscosity of porewater as the mixed water with glycerin was used during the centrifuge model experiments. The effect of drainage path on consolidation was investigated by installing the vertical drains. A serise of centrifuge model tests with conditions of single vertical and radial horizontal drainage were carried out. Kaolinite and Jumunjin standard sand were used as soft clay and surcharges respectively during tests. For testing condition of single vertical drainage considering similarity of permeability, it was found that consolidation with mixed porewater with glycerin was delayed in comparisons sons with test results with water only. For conditions of horizontal drainage with vertical drains, a low permeability by changing the viscosity of pore water resulted in delayed degree of consolidation at an initial stage of consolidation. But, it predicted not much differences in settlement as long as the consolidation time was sufficiently long enough to finish consolidation. Consequently, it was found that similarity in permeability should be considered to be critical for the case of centrifuge model experiments related to consolidation with long drainage path.

  • PDF

An experimental study on the hydraulic fracturing of radial horizontal wells

  • Yan, Chuanliang;Ren, Xu;Cheng, Yuanfang;Zhao, Kai;Deng, Fucheng;Liang, Qimin;Zhang, Jincheng;Li, Yang;Li, Qingchao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • Combining the radial well drilling and hydraulic fracturing technique, the production capacity of the reservoirs with low-permeability can be improved effectively. Due to the existence of radial holes, the stress around the well is redistributed, and the initiation and propagation of hydraulic fractures are different with those in traditional hydraulic fracturing. Therefore, it is necessary to study the influences of radial horizontal wells on hydraulic fracturing. The laboratory experiment was conducted to simulate the hydraulic fracturing on the physical model with radial holes. The experimental results showed that, compared with the borehole without radial holes, the sample with radial hole in the direction of maximum horizontal stress was fractured with significantly lower pressure. As the angle between direction of the horizontal hole and the maximum horizontal stress increased, the breakdown pressure grew. While when the radial hole was drilled towards the direction of the minimum horizontal stress, the breakdown pressure increased to that needed in the borehole without radial holes. When the angle between the radial hole and the maximum horizontal stress increase, the pressure required to propagate the fractures grew apparently, and the fracture become complex. Meanwhile, the deeper the radial hole drilled, the less the pressure was needed for fracturing.

Behavior of Moisture Transmission in Earlywood and Latewood for Cryptomeria japonica -Difference of Moisture Transmission Behavior and Calculation of the Vapor Permeability- (삼(杉)나무의 춘재부(春材部)와 추재부(秋材部)의 투습성(透濕性) -투습성(透濕性)의 차이(差異)와 투습율(透濕率)의 추정(推定)-)

  • Lee, Weon-Hee;Kim, Bung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.21-27
    • /
    • 1992
  • The amount of moisture transmitted under four different humidity conditions was measured in earlywood and latewood for Cryptomeria japonica(LT specimens). The results obtained are summarized as follows. The vapor permeability in eariywood was about three times larger than that of latewood. The vapor permeabilities in earlywood and late wood depended on the average moisture content of the wood. This indicates that moisture transmission is influenced by vapor permeability or vapor-transmission resistance, but the values obtained by experiments do not have great adaptability for practical situations because of changes in the experimental conditions. There fore, it is necessary to know the moisture content along the flow direction in order to explain the moisture transmission of wood. The vapor permeability was calculated using the density in air dried wood. These were then compared with the experimental values. The vapor permeabilities calculated with this density in the radial direction(LR specimen) had a good tendency to agree with the experimental values, but not so in tangential direction(LT specimen).

  • PDF