• Title/Summary/Keyword: radial distribution

Search Result 854, Processing Time 0.026 seconds

United Electromagnetic Characteristics and Online Monitoring Method of Static Air-gap Eccentricity of Turbo-Generator

  • Tang, Gui-Ji;Ke, Meng-Qiang;He, Yu-Ling;Wang, Fa-Lin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1614-1627
    • /
    • 2016
  • The purpose of this paper is to investigate the united Electromagnetic characteristics for the effective monitoring on the static air-gap eccentricity (SAGE) of turbo-generator. Different from other studies, this paper not only studies on the unbalanced magnetic pull (UMP) and the vibration characteristics of the stator and the rotor, but also investigates the harmonic features of the magnetic flux density and the circulating current inside the parallel branches (CCPB). The theoretical calculation, together with the finite-element-method (FEM) simulation and the experiment verification, is taken for a SDF-9 type non-salient generator. It is shown that, when SAGE occurs, apparent double-frequency UMP and vibrations will be produced both on the stator and the rotor, while the CCPB will have an obvious increment at the $1^{st}$ harmonic component. In addition, the amplitude of the magnetic flux density will be of cosine distribution in the circumferential position of the air-gap, while in normal condition it is a constant. Moreover, the pass-band amplitude, together with the $1^{st}$ harmonic of the magnetic flux density, will be enlarged as well. These united electromagnetic characteristics can be used as the diagnosis and monitoring criterion for SAGE.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Effect of a Magnetic Field on the Solute Distribution of Czochralski Single Crystal Growth (초크랄스키 단결정 성장에서 자기장이 용질분포에 미치는 영향)

  • Kim, Moo Gewi;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.388-397
    • /
    • 1999
  • Numerical simulations are carried out for the magnetic Czochralski single crystal growth system. It Is shown that a magnetic field significantly suppresses the convective flow and as the strength of magnetic field becomes to be stronger, the heat transfer in the melt is dominated by conduction rather than convection. By imposing a cusp magnetic field, the growth interface shape becomes convex toward the melt. When the axial magnetic field is imposed, there occurs an inversion of the interface shape with increase of the magnetic field strength. The oxygen concentration near the interface decreases with increasing cusp magnetic field strength while axial field causes an increase of an oxygen concentration at the central region and decrease of that at the edge of the crystal. The results show that the cusp magnetic field has advantages over an axial magnetic field In the radial uniformity of oxygen as well as in the additional degree of control.

DISTRIBUTION AND KINEMATICS OF FORMALDEHYDE IN DARK CLOUDS IN M17 AND NGC 2024

  • MINN Y. K.;LEE Y. B.
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.31-44
    • /
    • 1994
  • The 4.8GHz formaldehyde absorption line in the dark clouds in M17 and NGC 2024 regions has been mapped. In both nebulae, we detected two $H_2CO$ line components. In M17, the 24km $S^{-1}$ cloud is closely associated with the HII region located in front of the radio continuum source, and the 19km $S^{-1}$ cloud is associated with the visual dark clouds with a larger extent which are closer to us. The 19km $S^{-1}$ cloud has a mass motion approaching to the HII region. In both clouds, a velocity gradient from the north-east to the south-west directions is observed. The linewidth has no variation indicating no collapsing motion. In NGC 2024, the 9km $S^{-1}$ feature is extended along the dark bar in front of the bright nebula and a weak second component at 13km $S^{-1}$ is confined to the immediate vicinity of the radio source. Indications are that the 9km $S^{-1}$ cloud is physically associated with the dark bar and the 13km $S^{-1}$ cloud is located behind the radio source. The angular extent, the column density, and the total mass of the clouds are derived. The radial velocities of other molecular lines observed in these clouds are compared.

  • PDF

GALAXY FORMATION IN THE HUBBLE DEEP FIELD

  • PARK CHANGBOM;KIM JU HAN
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.83-94
    • /
    • 1997
  • We have identified the candidates for the primordial galaxies in the process of formation in the Hubble Deep Field (hereafter HDF). In order to select these objects we have removed objects brighter than 29-th magnitude in the HDF images and smoothed the maps with the Gaussian filters with the FWHM of 0.8' and 4' to obtain the difference maps. This has enabled us to find. very faint diffuse structures close to the sky level. Peaks are identified in the difference map for each of three HDF chips with three filters (F450W, F606W, and F814W). They have the apparent AB magnitudes typically between 29 and 31. The objects identified in different wavelengths filters have a strong cross-correlations. The correlation lengths are about 0.8'. This means that an object found in one filter can be also found as a peak within 0.8' separation in another filter, thus telling the reality of the identified objects. This angular scale is also the size of the primordial galaxies which have strong color fluctuations on their surfaces. Their large-scale distribution quite resembles that of nearby galaxies, supporting the idea that these objects are ancestors of the present bright galaxies forming at statistically high density regions. Inspections on individual objects show that these primordial galaxy candidates have tiny multiple glares embedded in diffuse backgrounds. Their radial light distributions are quite different from that of nearby bright galaxies. We may be now looking at the epoch of galaxy formation.

  • PDF

Numerical Simulation of Particle Deposition on a Wafer Surface (웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션)

  • 명현국;박은성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.

Transport Properties of Ar-Kr Mixtures: A Molecular Dynamics Simulation Study

  • Min, Sun-Hong;Son, Chang-Mo;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1689-1696
    • /
    • 2007
  • Equilibrium molecular dynamics (EMD) simulations are used to evaluate the transport coefficients of argonkrypton mixtures at two liquid states (state A: 94.4 K and 1 atm; state B: 135 K and 39.5 atm) via modified Green-Kubo formulas. The composition dependency of the volume at state A obeys close to the linear model for ideal liquid mixture, while that at state B differs from the linear model probably due to the high pressure. The radial distribution functions for the Ar-Kr mixture (x = 2/3) show a mixing effect: the first peak of g11 is higher than that of g(r) for pure Ar and the first peak of g22 is lower than that of g(r) for pure Kr. An exponential model of engineering correlation for diffusion coefficient (D) and shear viscosity (η) is superior to the simple linear model for ideal liquid mixtures. All three components of thermal conductivity (λpm, λtm, and λti) at state A and hence the total thermal conductivity decrease with the increase of x. At state B, the change in λtm is dominant over those in λpm and λti, and hence the total thermal conductivity decrease with the increase of x.

Analysis of Aerodynamic Performance in an Annular Compressor Bowed Cascade with Large Camber Angles

  • Chen, Shaowen;Chen, Fu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The effects of positively bowed blade on the aerodynamic performance of annular compressor cascades with large camber angle were experimentally investigated under different incidences. The distributions of the exit total pressure loss and secondary flow vectors of compressor cascades were analyzed. The static pressure was measured by tapping on the cascade surfaces, and the ink-trace flow visualizations were conducted. The results show that the value of the optimum bowed angle and optimum bowed height decrease because of the increased losses at the mid-span with the increase of the caber angle. The C-shape static pressure distribution along the radial direction exists on the suction surface of the straight cascade with large r camber angles. When bowed blade is applied, the larger bowed angle and larger bowed height will further enhance the accumulation of the low-energy fluid at the mid-span, thus deteriorate the flow behavior. Under $60^{\circ}$ camber angle, flow behavior near the end-wall region of some bowed cascades even deteriorates instead of improving because the blockage of the separated flow near the mid-span keeps the low-energy fluid near the end-walls from moving towards the mid-span region, and as a result, a rapid augmentation of the total loss is easy to take place under large bowed angle. With the increase of camber angle, the choice range of bowed angle corresponding to the best performance in different incidences become narrower.

Effect of Swirl Angle on the Atomization Characteristics in Twin-Fluid Nozzle with Dual Air Supplying (이중공기공급 2-유체 노즐의 선회각 변화에 따른 미립화 특성)

  • Woo, J.M.;Kim, E.S.;Kim, D.J.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.126-133
    • /
    • 2008
  • The atomization characteristics of the dual air supplying two-fluid nozzle were investigated experimentally using PIV and PDA systems. The twin-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air, and the main nozzle to produce sprays. The main nozzle has the swirler with four equally spaced tangential slots, which gives the injecting fluid an angular momentum. The swirl angle in the swirler varied with $0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$. The ratios of carrier air to assist air and ALR (total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the AMD and SMD distributions of the sprays were measured using PDA system. As a result, the SMD distribution increases along the radial distance, and it decreases with the increase of swirl angle in swirler.

  • PDF

Experimental Estimation of Thermal Durability in Ceramic Catalyst Supports for Passenger Car (승용차용 세라믹 촉매 담체의 열적 내구성의 실험적 평가)

  • Baek, Seok-Heum;Kim, Sung-Yong;Seung, Sam-Sun;Yang, Hyup;Joo, Won-Sik;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1157-1164
    • /
    • 2007
  • Ceramic honeycomb structures have performed successfully as catalyst supports for meeting hydrocarbon, carbon monoxide and nitrous emissions standards for gasoline-powered vehicles. Three-way catalyst converter has to withstand high temperature and thermal stress due to pressure fluctuations and vibrations. Thermal stress constitutes a major portion of the total stress which the ceramic catalyst support experiences in service. In this study, temperature distribution was measured at ceramic catalyst supports. Thermal durability was evaluated by power series dynamic fatigue damage model. Radial temperature gradient was higher than axial temperature gradient. Thermal stresses depended on direction of elastic modulus. Axial stresses are higher than tangential stresses. Tangential and axial stresses remained below thermal fatigue threshold in all engine operation ranges.