• Title/Summary/Keyword: radial distribution

Search Result 854, Processing Time 0.032 seconds

Preparation and Characterization of Uranium Silicide Dispersion Nuclear Fuel by Centrifugal Atomization (원심분무에 의한 Uranlum filicide 분산핵연료의 제조와 특성)

  • 김창규
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.72-78
    • /
    • 1994
  • Two kinds of $U_3Si$ powders and $U_3Si$ dispersed nuclear fuel meats have been prepared by conventional comminution process and a newly developed rotating disk atomization process. In contrast to angular shape and broad size distribution of the conventionally processed powder, the atomized powder was spherical and showed narrow size distribution. For the atomized powder, the heat treatment time for the formation of $U_3Si$ by a peritectoid reaction was reduced to about one tenth, thanks to microstructure refinement by rapid cooling of about 5$\times$104 K/s. The extruding pressure of atomized $U_3Si$ powder and Al powder mixture was lower than that of comminuted $U_3Si$ and Al powder mixture. The elongation of the atomization processed fuel meats was much higher than that of the comminution processed fuel meats and remained over 10% up to 80wt.% of $U_3Si$ powder fraction in the fuel meats. It appears therefore that the loading density of $U_3Si$ in fuel meat can be increased by using atomized $U_3Si$ powder. The atomized spherical particles were randomly distributed, while the comminuted particles with angular and longish shape were considerably aligned along the extrusion direction. Along the transverse direction of the extraction the electrical conductivity of the atomization processed fuel meats was appreciably higher than that of comminution processed fuel meats. This tendency became pronounced as $U_3Si$ content increased. Because the thermal conduction which is believed to be proportioned to the electrical conduction in the nuclear fuel meats occurs in radial direction, the atomization processed fuel can be better used in research reactors where high thermal conductivity is required.

  • PDF

Determination of the Fracture Hydraulic Parameters for Three Dimensional Discrete Fracture Network Modeling (3차원 단열망모델링을 위한 단열수리인자 도출)

  • 김경수;김천수;배대석;김원영;최영섭;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.80-87
    • /
    • 1998
  • Since groundwater flow paths have one of the major roles to transport the radioactive nuclides from the radioactive waste repository to the biosphere, the discrete fracture network model is used for the rock block scale flow instead of the porous continuum model. This study aims to construct a three dimensional discrete fracture network to interpret the groundwater flow system in the study site. The modeling work includes the determination of the probabilistic distribution function from the fracture geometric and hydraulic parameters, three dimensional fracture modeling and model calibration. The results of the constant pressure tests performed in a fixed interval length at boreholes indicate that the flow dimension around boreholes shows mainly radial to spherical flow pattern. The fracture transmissivity value calculated by Cubic law is 6.12${\times}$10$\^$-7/ ㎡/sec with lognormal distribution. The conductive fracture intensity estimated by FracMan code is 1.73. Based on this intensity, the total number of conductive fractures are obtained as 3,080 in the rock block of 100 m${\times}$100 m${\times}$100 m.

  • PDF

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.

Development of KD-Propeller Series Using a New Blade Section

  • Lee, Jin-Tae;Kim, Moon-Chan;Ahn, Jong-Woo;Kim, Ho-Chung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.76-90
    • /
    • 1993
  • A new propeller series is developed using the newly developed blade section (KH 18 section) which has better cavitation characteristics and higher lift-drag ratio at wade angle-of-attack range than a conventional section. The radial patch distribution of the new series propellers is variable stance they were designed adaptively to a typical wake distribution. Basic geometric particulars of the series propellers. such as chord length, thickness, skew and rake distributions, are determined on the basis of recent full scale propeller geometric data. The series is developed for propellers having 4 blades, and blade area ratios of 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are varied as 0.5, 0.6, 0.7, 0.95 and 1.1 for each blade area ratio. The new propeller series consists of 20 propellers and is named as the KD(KRISO-DAEWOO)-propeller series. Propeller open-water tests are performed at the towing tank, and cavitation observation tests and fluctuating pressure tests are carried out at the cavitation tunnel of KRISO. $B_{p}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller open-water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The cavity extent predicted by the KD-cavitation chart would be more accurate compared to that by an existing cavitation charts, such as the Burrll's cavitation chart, since the former is derived from the cavitation observation test results in a typical ship's wake, while the lather is derived from the test results in a uniform flow.

  • PDF

Comparison of Spray Angles of Multihole Port Fuel Gasoline Injector with Different Measuring Methods (측정방법에 따른 흡기포트 분사식 다공 가솔린인젝터의 분무각 비교)

  • Kim, J.H.;Rhim, J.H.;No, S.Y.;Moon, B.S.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.17-26
    • /
    • 2000
  • The main parameter commonly used to evaluate spray distribution is spray angle. Spray angle is important because it influences the axial and radial distribution of the fuel. Spray angles were measured and compared for the two non-air assisted injectors such as 2hole-2stream 4hole-1stream injectors used for port fuel injection gasoline engines with n-heptane as a fuel by three different measuring techniques, i.e., digital image processing, shadowgraphy, and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35 MPa into the room temperature and atmospheric pressure environment. In digital image processing approach, the selection of the transmittance level is critical to obtain the edge of spray and hence to measure the spray angle. From the measurement results by the shadowgraphy technique, it is dear that the spray angle is varied during the spray injection period. The measurement results from spray patternator show that the different spray angles exist in different region. Spray angle increases with the increase in the injection pressure. it is suggested that the spray angle and stream separated angle should be specified when spray is characterized for 2hole-2stream injector, because spray angle is much different though stream separated angle is same. It was also considerably affected by the measurement techniques introduced in this experimental work. However, the optimal axial distance for measuring the spray angle seems to be at least 60-80 mm from the injector tip for two non-air assisted injectors.

  • PDF

Radial Distribution of Calcium, Phosphorus, Iron, Thiamine and Riboflavin in the Degermed Brown Rice Kernel (현미입(玄米粒) 내의 칼슘, 인, 철, 비타민$B_1$$B_2$의 분포에 관한 연구)

  • Kim, Sung-Kon;Cheigh, Hong-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.122-125
    • /
    • 1979
  • Degermed brown rice of Akibare (short grain) and Milyang 23 (medium grain) was abraded fiveconsecutive times to remove outer $5{\sim}6%$ of the kernel per milling. Samples were analyzed for calcium, phosphorus, iron, thiamine and riboflavin. Milled fraction I (about $5{\sim}6%$ of the kernel) contained 8 times as much calcium and phosphorus as did the original kernel; iron, $4{\sim}5$; thiamine, 3; and riboflavin, 4. Contents of fraction I were much greater than those in the residual kernel; 18 times as great for calcium; $32{\sim}36$ times for phosphorus; $5{\sim}10$ times for iron 5 times for thiamine; and $19{\sim}30$ times for riboflavin. Milyang 23 showed a steeper concentration gradient of calcium and riboflavin, but more even distribution of iron than did Akibare. There were no significant differences in phosphorus and thiamine gradients between the two rices.

  • PDF

A Molecular Dynamics Study on the Liquid-Glass-Crystalline Transition of Lennard-Jones System (한 Lennard-jones 시스템의 액체-유리-결정 전이에 관한 분자동역학 연구)

  • Chang, Hyeon-Gu;Lee, Jong-Gil;Kim, Sun-Gwang
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.678-684
    • /
    • 1998
  • By means of constant- pressure molecular dynamics simulations, we studied the liquid- glass- crystalline transition of a system composed of Lennard- Jones particles with periodic boundary conditions. Atomic volume and enthalpy were calculated as functions of temperature during heating and cooling processes. The Wendt- Abraham ratio derived from radial distribution function and the angular distribution function characterizing short range order were analyzed to distinguish between liquid, glass and crystalline states. A liquid phase resulting from a slow heating of an initial fee crystal amorphized on fast quench, but it crystallized on slow quench. When slowly heated, the amorphous phase from fast quench crystallized into an fee structure. A system with free surface was shown to melt from the surface inward at a lower temperature than bulk system and to have a strong tendency for crystallization even during a fast quench from a liquid state.

  • PDF

Prevalence of feline calicivirus and the distribution of serum neutralizing antibody against isolate strains in cats of Hangzhou, China

  • Zheng, Mengjie;Li, Zesheng;Fu, Xinyu;Lv, Qian;Yang, Yang;Shi, Fushan
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.73.1-73.11
    • /
    • 2021
  • Background: Feline calicivirus (FCV) is a common pathogen of felids, and FCV vaccination is regularly practiced. The genetic variability and antigenic diversity of FCV hinder the effective control and prevention of infection by vaccination. Improved knowledge of the epidemiological characteristics of FCV should assist in the development of more effective vaccines. Objectives: This study aims to determine the prevalence of FCV in a population of cats with FCV-suspected clinical signs in Hangzhou and to demonstrate the antigenic and genetic relationships between vaccine status and representative isolated FCV strains. Methods: Cats (n = 516) from Hangzhou were investigated between 2018 and 2020. The association between risk factors and FCV infection was assessed. Phylogenetic analyses based on a capsid coding sequence were performed to identify the genetic relationships between strains. In vitro virus neutralization tests were used to assess antibody levels against isolated FCV strains in client-owned cats. Results: The FCV-positive rate of the examined cats was 43.0%. Risk factors significantly associated with FCV infection were vaccination status and oral symptoms. Phylogenetic analysis revealed a radial phylogeny with no evidence of temporal or countrywide clusters. There was a significant difference in the distribution of serum antibody titers between vaccinated and unvaccinated cats. Conclusions: This study revealed a high prevalence and genetic diversity of FCV in Hangzhou. The results indicate that the efficacy of FCV vaccination is unsatisfactory. More comprehensive and refined vaccination protocols are an urgent and unmet need.

Using three-dimensional theory of elasticity for vibration analysis of laminated sectorial plates

  • Liyuan Zhao;Man Wang;Rui Yang;Meng Zhao;Zenghao Song;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • The main goal of this paper is to study vibration of damaged core laminated sectorial plates with Functionally graded (FG) face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular sector plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions.

Influence of Blending Method on the Generation of Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Sanghoon Song;Junhwan Jeong;Jin Uk Ha;Daedong Park;Gyeongchan Ryu;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Because particulate matter has emerged as a major contributor to air pollution, the tire industry has conducted studies to reduce particulate matters from tires by improving tire performance. In this study, we compared the conventional blending method, in which rubber, filler, and additives are mixed simultaneously, to the Y-blending method, in which masterbatches are blended. We manufactured carbon black (CB)-filled natural rubber (NR)/butadiene rubber (BR) blend and silica-filled epoxidized NR/BR blend compounds to compare the effects of the two blending methods on the physical properties of the compounds and the amount of particulate matter generated. The Y-blending method provided uniform filler distribution in the heterogeneous rubber matrix, improved processability, and exhibited low rolling resistance. This method also improved physical properties owing to the excellent filler-rubber interaction. The results obtained from measuring the generation of particulate matter indicated that, the Y-blending method reduced PM2.5 particulate matter generation from the CB-filled and silica-filled compounds by 38% and 60%, and that of PM10 by 29% and 67%, respectively. This confirmed the excellence of the Y-blending method regarding the physical properties of truck bus radial tire tread compounds and reduced particulate matter generated.