• Title/Summary/Keyword: radial direction magnetic flux

Search Result 15, Processing Time 0.022 seconds

Comparison and Analysis on magnetic structures of Switched Reluctance Motors (Switched Reluctance Motor의 자기적 구조에 대한 비교 해석)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.131-141
    • /
    • 2016
  • SRM is designed to meet operating standards such as low cost, simple magnetic structure, a desired operating speed range, high efficiency, high performance, and good matching for DC power. The magnetic flux of SRM is independent of its direction to develop a torque and it allows the flexible characteristics of the magnetic structure for SRM. In this paper, SRM can widely classify two types, Radial-Flux SRM and Axial-Flux SRM, according to the flux direction. Radial-Flux SRM includes Conventional, Segmented stator and rotor, and Double stator SRM, etc. and Axial-Flux SRM includes C-core stator and the Axial-airgap SRM. This paper is subjected the basic characteristics to select the best of the magnetic structure of SRM in the appropriate application by the classification of SRM.

Design of Salient Pole Rotor Type Single Phase SRM

  • Oh, Young-Woong;Lee, Eun-Woong;Kim, Jun-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.9-14
    • /
    • 2001
  • Because salient pole rotor type single phase SRM(Switched Reluctance Motor) has a simple structure and can be use both radial and axial direction magnetic flux at the same time, its output power per unit volume is high. Therefore, the shaft length can be minimized when compared with same output motors. However, salient pole rotor is hard to design due to its complex magnetic circuit. In this paper, salient pole rotor type single phase SRM with minimized shaft length is designed and selected the most suitable dimension of rotor, stator, pole arc and salient pole.

Construction and Characteristics of Single Phase Switched Reluctance Motor

  • Oh, Young-Woong;Lee, Eun-Woong;Lee, Jong-Han;Kim, Jun-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The single phase switched reluctance motor (SRM) has many merits; simple structure and driving circuits, easy operation and speed control, and etc. This paper presents the torque characteristics of disk type single phase SRM by changing the salient pole lengths and pole arcs. The prototype single phase SRM has a three dimensional magnetic flux pattern because of its structure. That is, the radial and axial magnetic flux contributes to torque generation. Thus, 3D analysis is required for computation of its magnetic field. In this paper, 3D FEM is used for analyzing the magnetic flux distribution and magnetic co-energy.

Computing EMF of Salient Pole Rotor Type Single Phase SRM (돌극형 회전자 단상 SRM의 유도기전력 산출)

  • Kim, Jun-Ho;Lee, Eun-Woong;Oh, Young-Woong;Lee, Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.868-870
    • /
    • 2001
  • Salient pole rotor type single phase SRM(switched reluctance motor) can be use axial direction magnetic flux and radial direction magnetic flux at the same time. Then, it has higher energy density per unit volume and can be lessened the shaft length of motor or exciting magnetic force. Additionally, it's durability is good because it is simple structure and driving device. Prototype of Salient pole rotor type single phase SRM was fabricated by using parameters of three phase SRM and 3D FEM analysis. Also, driving device was fabricated for prototype. Speed and torque characteristic was confirmed through the experiments, and flux linkage, which is important parameter of SRM for generating torque, was measured. The induction emf was calculated by using ideal inductance graph and current graph. Calculated emf and measured emf was compared for confirming loss of prototype in this paper.

  • PDF

Magnetization Curves Measurement for Fundamental Characteristics Analysis of Disk-type Single Phase SRM (Disk형 단상 SRM의 기본 특성 해석을 위한 자화곡선 측정)

  • Lee, Chung-Won;Lee, Jong-Han;Lee, Eun-Woong;Oh, Young-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.91-93
    • /
    • 2003
  • Disk type Single Phase SRM(Switched Reluctance Motor) can be used axial direction magnetic flux and radial direction magnetic flux. In this paper, the flux linkage was measured according as rotor positions of disk-tyre single phase SRM, which is designed and manufactured in previous research. From the measured data, we got the magnetization curves, inductance profile and Co-energy.

  • PDF

Estimation of Magnetic Co-Energy in Salient Pole Rotor Type Single Phase SRM

  • Kim, Jun-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Jong-Han;Lee, Chung-Won
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.47-53
    • /
    • 2004
  • The salient pole rotor type single phase SRM (switched reluctance motor) uses radial and axial direction magnetic flux simultaneously. Therefore, the output power per unit volume is very high and the shaft length is shorter than other types of SRMs with the same output. Furthermore, it can be manufactured with low cost owing to its simple structure and driving circuit. The prototype was designed using the theory of the traditional rotating machine and 3D FEM analysis. On this paper, the experiment apparatus, which includes the fabricated prototype in previous researches, was fabricated to measure the current and voltage of the prototype. Then the flux linkage, inductance and magnetic co-energy were calculated using the experimental results. Finally, the measured magnetic co-energy was compared with the simulated magnetic co-energy.

Analysis of an Interior Permanent-Magnet Machines with an Axial Overhang Structure based on Lumped Magnetic Circuit Model

  • Seo, Jangho;Seo, Jung-Moo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.94-101
    • /
    • 2016
  • This paper shows a new magnetic field analysis of an interior permanent magnet (IPM) machines with an axial overhang structure wherein the rotor axial length exceeds that of the stator. The rotor overhang used to increase torque density of the radial flux machine is difficult to analyze because of extra consideration of axial direction, and thus it is general for machine designer to take 3-D finite element analysis (FEA) capable of considering both radial and axial complicated geometry in the machine. However, it requires too much computing time for preliminary design especially for optimization process. Therefore, in this paper a 2-D analytic method using a lumped magnetic circuit model (LMCM) is proposed to overcome the problem. For the analysis of overhang effect, the magnetic circuit is separated and solved from overhang and non-overhang regions respectively. For the validation of proposed concept, 3-D finite element analysis (FEA) is performed. From the analysis results, it is shown that our new proposed method presents good performance in terms of calculating electromotive force (EMF) and torque within a short time. Therefore, the proposed model can be useful in design of IPM with an overhang structure.

Spectroscopic Measurement of Temperature Distribution in Some Plasma Jets (분광학적 방법에 의한 Plasma Jet의 온도분석 측정)

  • 전춘생;박용관;임명선
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.104-110
    • /
    • 1977
  • This paper investigates temperature distribution of plasma jets which used argon gas, and nitrogen gas mixed with argon as working fluids in spectroscopic method, and studies correlations between them main results are as follows; 1) The temperature at the center of plasma jet increases with are current and gas flow, and decreases with magnetic flux density along the axial direction. 2) The changing rate of temperature of plasma jet in the radial direction decreases rapidly beyond 2mm from central axis. 3) Temperature drop rate of plasma jet in the central axis direction appears most apparant beyond 13mm above the nozzle exit. 4) When argon gas mixed with a small amount of nitrogen, plasma temperature increases at same are current compared with the case of argon gas only.

  • PDF

Propagation characteristics of CMEs associated magnetic clouds and ejecta

  • Kim, Roksoon;Gopalswamy, Nat;Cho, Kyungsuk;Moon, Yongjae;Yashiro, Seiji;Park, Youngdeuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.132.2-132.2
    • /
    • 2012
  • We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counter parts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found several properties of the CMEs as follows: (1) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly to the Earth than the EJ-associated CMEs; (2) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; (3) the mean speed of MC-associated CMEs (946 km/s) is faster than that of EJ-associated CMEs (771 km/s). For seven very fast CMEs (>1500 km/s), all CMEs with large D (>0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially decides the observed ICME structure.

  • PDF

Design of Low Power Consumption Hybrid Magnetic Bearing for Flywheel Energy Storage System (플라이휠 에너지 저장장치를 위한 저 전력소모 하이브리드 마그네틱 베어링의 설계)

  • Kim, Woo-Yeon;Lee, Jong-Min;Bae, Yong-Chae;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.717-726
    • /
    • 2010
  • For the application into a 1 kWh flywheel energy storage system(FESS), this paper presents the design scheme of radial and axial hybrid magnetic bearings which use bias fluxes generated by permanent magnets. In particular, the axial hybrid magnetic bearing is newly proposed in this paper, in which a permanent magnet is arranged in axial direction so that it can support the rotor weight as well as provide a bias flux for axial magnetic bearing. Such hybrid magnetic bearings consume very low power, compared with conventional electromagnetic bearings. In this paper, to stably support a 140 kg flywheel rotor without contact, design process is explained in detail, and magnetic circuit analysis and three-dimensional finite element analysis are carried out to determine the design parameters and predict the performance of the magnetic bearings.